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                                      Convergence of Multiple Mechanisms of Steroid 
Hormone Action

gene expression and function. Interestingly, not 
all the “classical” receptors are intranuclear and 
can be associated at the membrane. As described 
in this review, extranuclear ERs and PRs at the 
membrane or in the cytoplasm can interact with 
G proteins and signaling kinases, and other G 
protein coupled receptors, to mediate rapid 
eff ects of the hormones. The rapid actions involv-
ing cytoplasmic kinase signaling and/or extra-
nuclear steroid receptors can result in both 
transcription-independent and transcription-
dependent actions. In addition, to their cognate 
ligands, intranuclear steroid receptors (PRs) can 
also be activated in a “ligand-independent” man-
ner by neurotransmitters (dopamine; DA). In this 
review, the distinct classical and nonclassical cel-
lular and molecular mechanisms of steroid hor-
mone action will be discussed with specifi c 
reference to E2 and P eff ects in central and sym-
pathetic nervous systems (     ●  ▶     Fig. 1  ).

     Mechanisms of Progesterone Action in 
Brain
 ▼
   Ovarian steroid hormones, E 2  and P regulate cel-
lular functions in the central nervous system 
resulting in alterations in physiology and repro-

        Abbreviations
 ▼
     CBP     CREB binding protein 
   CRE     CREB response element 
   DAR     Dopamine receptor (DAR) 
   ER     Estrogen receptor 
   ERE     Estrogen response element 
   mGluR     Metabotropic glutamate receptor 
   PGMRC1     Progesterone membrane receptor 
 component 1 
   PR     Progestin receptor 
   PRE     Progestin response element 
   SRCs     Steroid receptor coactivators 

     Introduction
 ▼
   Steroid hormones, estradiol (E 2 ) and progester-
one (P), regulate important physiological proc-
esses including development, diff erentiation, 
metabolism, reproduction, learning, and mem-
ory in various species. The biological eff ects of E 2  
and P are primarily mediated by binding to their 
classical intranuclear receptors, estrogen (ERs) 
and progestin receptors (PRs) that act as ligand-
inducible transcription factors and interact with 
steroid receptor coregulators to modulate target 
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                                      Abstract
 ▼
   Steroid hormones modulate a wide array of 
physiological processes including development, 
metabolism, and reproduction in various species. 
It is generally believed that these biological eff ects 
are predominantly mediated by their binding to 
specifi c intracellular receptors resulting in con-
formational change, dimerization, and recruit-
ment of coregulators for transcription-dependent 
genomic actions (classical mechanism). In addi-
tion, to their cognate ligands, intracellular steroid 

receptors can also be activated in a “ligand-inde-
pendent” manner by other factors including neu-
rotransmitters. Recent studies indicate that rapid, 
nonclassical steroid eff ects involve extranuclear 
steroid receptors located at the membrane, which 
interact with cytoplasmic kinase signaling mol-
ecules and G-proteins. The current review deals 
with various mechanisms that function together 
in an integrated manner to promote hormone-
dependent actions on the central and sympathetic 
nervous systems.

 *   All the authors contributed equally to this work. 
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ductive behavior. As in other steroid-sensitive tissues, the regu-
latory action of E 2  on behavior is believed to involve the 
activation of ERs, altering the expression of a number of genes, 
including PR gene. Progestins, including P, exert their physiolog-
ical eff ects primarily by binding to E 2 -induced, intracellular PRs, 
which function as transcriptional factors, regulating the expres-
sion of genes and genomic neural networks to initiate and/or 
sustain physiological response   [ 1   ,  2 ]  . PRs undergo signifi cant 
conformational change upon binding by P, leading to their 
nuclear translocation, dimerization and DNA binding   [ 3 ]  . When 
bound to DNA, PRs interact with basal transcriptional machin-
ery, assisted by coactivator molecules to initiate chromatin 
remodeling   [ 4      – 6 ]  . Phosphorylation of the coactivators also plays 
a crucial role in the activation of steroid receptors   [ 7   ,  8 ]  . The role 
of coactivators is discussed below.
  Spatial, temporal, and functional correlations indicate that E 2 -
induced PRs function as transcriptional mediators and regulate 
transcription of target genes to aff ect reproductive behavior   [ 2 ]  . 
The time course of activation and termination of reproductive 
behavior has also been shown to parallel E 2 -induced increase 
and decline in PRs in the hypothalamus and the preoptic areas of 
the brain. A wide body of literature has identifi ed diff erent neu-
roanatomical sites in the regulation of female sexual behavior by 
steroid hormones   [ 9 ]  . Studies using PR antagonists, protein and 
RNA synthesis inhibitors, antisense to oligonucleotides to PRm-
RNA and PR mutant mice indicate a requirement for classical 
genomic mode of activation involving intracellular PRs in 
P-mediated facilitation of reproductive behavior   [ 10               – 15 ]  .
  Studies have also demonstrated that PRs can be activated by fac-
tors other than their cognate ligand, P (ligand-independent 
 activation). Second messenger molecules, including 3′,5′-cyclic 
adenosine monophosphate (cAMP), 3′,5′-cyclic guanosine mono-
phosphate (cGMP), nitric oxide (NO), and neurotransmitter 
(dopamine, DA) can substitute for P in the facilitation of repro-
ductive behavior   [ 16   ,  17 ]  . Using PR antagonists, antisense oligo-
nucleotides and null mutants for PRs, the critical requirement of 
classical PRs as transcriptional mediators in the cross talk 
between P and DA-initiated pathways in the facilitation of 

female sexual receptive behavior has been demonstrated 
  [ 18   ,  19 ]  . In addition, DA-initiated second messenger signaling 
cascade was demonstrated to involve the activation of protein 
kinase A (PKA) and neuronal phosphoprotein, dopamine and 
cAMP regulated phosphoprotein-32 (DARPP-32)   [ 20 ]  . This sign-
aling mechanism could potentially lead to the alterations in the 
phosphorylation dynamics and activation of PRs and/or its 
coregulators as discussed below.
  While genomic eff ects characterized by a delayed onset have 
traditionally been assumed to be the primary pathway for P 
action in the brain, recent studies suggest the involvement of 
“nonclassical” mechanisms of progesterone action. These non-
classical short-latency eff ects of progesterone widely aff ect cell 
functioning, through modulation of putative cell surface recep-
tors, ion channels and mechanisms coupled to cytoplasmic 
 second messenger signaling cascades, independent of gene tran-
scription   [ 21      – 23 ]  . In addition to P, several of its ring-A reduced 
metabolites have been shown to facilitate lordosis response in 
ovariectomized, E 2 -primed female rats via activation of MAPK 
pathway   [ 17 ]  . A number of laboratories have reported the 
involvement of at least 4 extranuclear kinase systems, PKA, PKC, 
CaMKII, and PKG in the rapid P eff ects in the VMH and POA of the 
female rat   [ 16   ,  17   ,  21   ,  24         – 27 ]  . Since the initiation of these non-
classical eff ects occurs rapidly (in seconds or minutes) and is 
triggered at the membrane surface, the classical model of 
nuclear PR-mediation is inadequate to account for these eff ects. 
Recent evidence suggests the involvement of 2 types of novel 
membrane proteins unrelated to classical PRs, progesterone 
membrane receptor component 1 (PGMRC1) and progesterone 
membrane receptors (mPRs), in P signaling in several reproduc-
tive tissues and in the brain   [ 28   ,  29 ]  . Inhibition of MAPK signaling 
pathway results in reduction of P, dibutyryl-cAMP (db-cAMP)-, 
prostaglandin E 2  (PGE 2 )-, or GnRH-facilitated female reproductive 
behavior in rats   [ 17 ]  . These studies suggest that E 2  and P actions 
in the brain could involve rapid activation of multiple signal 
transduction pathways that converge with classical genomic 
pathways.

    Fig. 1    Convergence of progesterone- and 
estradiol-mediated signaling in the nervous 
system. Through membrane, cytosolic, and intra-
cellular receptors, these hormones aff ect surface 
membrane signaling, second messenger systems, 
and gene expression. Transcriptional co-factors 
are also intimately involved in the regulation of 
classical, steroid hormone-mediated as well as 
activity-dependent gene expression. 
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    Nuclear Receptor Coactivators: The p160 Steroid 
Receptor Coactivator Family
 ▼
   In the classic genomic mechanism of action discussed above, 
nuclear receptor coregulators enhance (coactivators) or repress 
(corepressors) the steroid receptor transcriptional activity. Over 
300 coactivators have been identifi ed, many of which have been 
shown to function in physiology, behavior and human disease 
  [ 30 ]  . This review will focus on the role of the steroid receptor 
coactivator family in metabolism and brain and behavior.
  The steroid receptor coactivator (SRC) family of p160 proteins 
consists of SRC-1 (NcoA-1), SRC-2 (GRIP1/TIF2/NCoA-2), and 
SRC-3 (AIB1/TRAM-1/ACTR/RAC3/pCIP). This SRC family of coac-
tivators physically interacts with steroid receptors, including 
receptors for androgens (AR), estrogens (ER), progestins (PR), and 
glucocorticoids (GR), in a ligand-dependent manner   [ 31 ]  . The 
C-terminus of the SRCs contains 2 activation domains (AD-1 and 
AD-2), while the N-terminus contains a third activation domain 
(AD-3) and a bHLH-PAS motif (basic helix loop helix-Per Arnt 
Sims), which is the most conserved domain within this family of 
proteins. The activation domains interact with secondary coac-
tivators known as co-coactivators. These co-coactivators act as 
bridging molecules between the receptor and the general tran-
scription machinery and modify chromatin within the promoter 
and enhancer regions by histone acetylation and methylation 
  [ 31 ]  .

    The p160 SRC Family in Metabolism
 ▼
   All 3 members of the p160 family of coactivators are involved in 
metabolic homeostasis. SRC-1 is critical in maintaining energy 
balance by regulating both energy intake and expenditure   [ 32 ]  . 
In support, SRC-1 knockout mice have decreased energy expend-
iture and a reduced thermogenic capacity and thus, are prone to 
obesity. One proposed mechanism of action for SRC-1 in metab-
olism is through its interactions with PPARγ coactivator-1α 
(PGC-1α), an important regulator of mitochondrial biogenesis 
and oxidative phosphorylation   [ 32 ]  . In contrast to SRC-1, SRC-2 
knockout mice are leaner than wild type mice and have an 
increase in adaptive thermogenesis   [ 33 ]  . It has been suggested 
that the absence of SRC-2 results in enhanced interaction 
between SRC-1 and PGC-1α, which increases thermogenic activ-
ity. Thus, it has been proposed that the ratio of SRC-1 and SRC-2 
plays a role in maintaining the balance of energy expenditure 
and adipogenesis through controlling PGC-1α activity   [ 33 ]  . 
SRC-3 knockouts have lower body fat content compared with 
wild-type mice   [ 32 ]  . SRC-3 mediates the transcriptional activity 
of PPARγ2, which is important for adipocyte diff erentiation   [ 33 ]  . 
In support, adipocyte diff erentiation and adipogenesis are 
impaired in mouse embryonic fi broblasts from cells isolated 
from SRC-3 knockout mice or from 3T3-L1 adipocyte cells with 
decreased levels of SRC-3   [ 33 ]  . Taken together, these studies sug-
gest that the 3 members of the p160 SRC family play an impor-
tant role in energy homeostasis.

    The p160 SRC Family in Brain and Behavior
 ▼
   A variety of recent studies indicate that 2 of the p160 SRC family 
members, SRC-1 and SRC-2, are important for hormone action in 
brain and the regulation of behavior   [ 34 ]  . SRC-1 and SRC-2 are 

expressed at high levels in the hypothalamus, cortex and hip-
pocampus of rodents   [ 34                           – 43 ]   and birds   [ 44         – 47 ]  . Interestingly, in 
contrast with the other members of the SRC family, SRC-3 is 
expressed sparsely in the hypothalamus   [ 48 ]  . In order for SRC-1 
and SRC-2 to function with steroid receptors in brain, both the 
coactivator and receptor must be expressed in the same cells. In 
support, SRC-1 and SRC-2 are expressed in the majority of estra-
diol-induced PR cells in regions involved in metabolism and 
behavior, including the ventromedial hypothalamus (VMH), 
medial preoptic area and arcuate nucleus in rodents   [ 35   ,  49 ]  . A 
variety of studies reveal that steroids infl uence the expression of 
these coactivators in brain   [ 35   ,  43   ,  50      – 52 ]  . Moreover, protein-
protein interactions studies reveal that SRC-1 and SRC-2 from 
rodent brain physically associate with ER and PR in a receptor 
subtype- and brain region-specifi c manner   [ 53   ,  54 ]  .
  A variety of studies using antisense to SRC-1 or SRC-2 mRNA 
indicate that these coactivators are important for hormone 
dependent brain development and behavior. SRC-1 is critical for 
normal development of hormone-dependent sexual diff erentia-
tion of the brain and adult sexual behavior   [ 40 ]  . In the adult 
brain, SRC-1 and SRC-2 function in the VMH to modulate ER-
mediated transactivation of the behaviorally-relevant PR gene 
  [ 48   ,  55 ]  . In addition, SRC-1 functions in the VMH to infl uence 
distinct ER- and PR-dependent aspects of female sexual behavior 
  [ 56 ]  . Interestingly, reduction of SRC-1 expression in this brain 
region by antisense altered PR function and reduced PR-depend-
ent proceptivity (behavior by the female to solicit interaction by 
the male), but not PR-dependent receptivity   [ 56 ]  . These fi ndings 
suggest that reduction of SRC-1 by antisense disrupted the activ-
ity of PR signaling pathway(s) that infl uence proceptivity, while 
alternate PR signaling pathways, that regulate PR-dependent 
receptivity, remained intact and functional. These coactivators, 
and others, have also been found to be essential in hormone 
action in brain and behavior of birds   [ 57   ,  58 ]  .
  The p160 family of nuclear receptor coactivators has a critical 
role in modulating steroid receptor action at the cellular level. In 
the future, it will be important to determine the role of these 
coactivators in nonclassical and membrane steroid signaling in 
brain discussed above and below, respectively. A better under-
standing of how these important coactivators function in brain 
is crucial to understanding the complex regulation of behavior 
and physiology by steroids.

    Membrane Estrogen Receptors Activate 
Metabotropic Glutamate Receptor Signaling
 ▼
   While we continue to appreciate the diversity of signaling 
regarding the actions of nuclear ERα, ERβ and their associated 
proteins, estrogen receptors are also traffi  cked to the surface 
membrane, whereby they regulate various intracellular signal-
ing pathways. Membrane-initiated estrogen action, both inside 
and outside of the nervous system has been described for quite 
some time   [ 59   ,  60 ]  . Yet, the identity of these membrane associ-
ated receptors has for years remained controversial   [ 61 ]  . Several 
studies have suggested unique estrogen receptors acting at the 
membrane to initiate intracellular signaling   [ 62      – 64 ]  , while oth-
ers have reported that these G-protein coupled receptors, local-
ized to endoplasmic reticulum, are not activated by E 2  and have 
no eff ect on intracellular signaling   [ 65 ]  . That said, in most sys-
tems, membrane-initiated steroid hormone action appears due 
to the activation of a subpopulation of ERα and ERβ that have 
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been modifi ed to traffi  c and act at the neuronal surface   [ 66   ,  67 ]  . 
Determining how ERα and ERβ act at the membrane to aff ect 
intracellular signaling and how these estrogen receptors are 
traffi  cked to the membrane is critical to understanding estrogen 
action in brain.
  Recent studies have focused on estradiol-mediated phosphor-
ylation (i. e., activation) of the transcription factor CREB   [ 68   ,  69 ]  . 
Phosphorylation of CREB is an important convergence point in 
cell signaling, and is involved in various forms of neuronal plas-
ticity, including learning and memory, drug addiction and noci-
ception   [ 70 ]  , processes also under the infl uence of estrogens 
  [ 61 ]  . Work across multiple laboratories has indicated that acti-
vation of surface estrogen receptors leads to CREB phosphoryla-
tion via stimulation of the MAPK/ERK signaling pathway 
  [ 71      – 73 ]  . Furthermore, estrogen receptor knockout mice do not 
exhibit estrogen-dependent CREB phosphorylation, indicating 
the dependence upon ERα and ERβ   [ 74 ]  .
  To elucidate the signaling mechanisms by which estradiol aff ects 
CREB phosphorylation, initial studies utilized primary cultures 
from rat hippocampus   [ 75 ]  . Estradiol stimulation of membrane 
ERα was found to initiate mGluR1 signaling. These actions of 
estradiol/ERα on mGluR1 were independent of glutamate and 
only occurred in cultures generated from female rats. ERα acti-
vation of mGluR1 signaling led to CREB phosphorylation via Gq-
mediated stimulation of phospholipase C (PLC), protein kinase C 
(PKC) and inositol trisphosphate (IP3). Interestingly, this was not 
the only membrane-initiated signaling pathway sensitive to 
estradiol. In these same neurons, estradiol-mediated activation 
of ERα or ERβ would lead to activation of mGluR2. Activation of 
these Gi/o G protein-coupled receptors by estradiol would lead 
to an attenuation of L-type calcium channel-mediated CREB 
phosphorylation. This was consistent, as well as provided a 
mechanism, regarding previous fi ndings of estradiol inhibition 
of L-type calcium channels   [ 76 ]  .
  While CREB phosphorylation is only one of many downstream 
targets of mGluR activation, it was somewhat surprising to 
observe estradiol regulating opposing processes within the 
same cell. That is, at least, if gonadal estrogens are the principal 
activators of ER/mGluR signaling. However, recent work has pro-
vided several clues that brain-derived estrogen (i. e., neuroestro-
gen) may be the critical mediator of rapid estrogen signaling 
  [ 77 ]  . Specifi cally, not only does estradiol directly aff ect the elec-
trochemical state of the cell, but also synthesis of estradiol from 
aromatase localized to presynaptic boutons suggests estradiol 
may act as a neurotransmitter   [ 78         – 81 ]  . A universal characteris-
tic of neurotransmission is that the ligand release point is proxi-
mal to the location of the cognate receptor. Thus, if ER/mGluR 
signaling acts as similar to a traditional neurotransmitter sys-
tem, these signaling proteins must also be spatially restricted. In 
fact, caveolin-1 expression was found to be essential for the 
functional coupling of ERα with mGluR1a, whereas, caveolin-3 
is necessary for ERα and ERβ activation of mGluR2   [ 68 ]  . Hence, 
the spatial segregation of diff erent ER/mGluR signaling path-
ways can allow for independent activation and inhibition of 
CREB phosphorylation.
  Because membrane estrogen receptor signaling is widespread 
both inside and outside of the nervous system, it was deter-
mined whether ERs were coupled to mGluR signaling in other 
brain regions. Similar to previous results in hippocampal cul-
tures, bidirectional eff ects of estradiol on CREB phosphoryla-
tion, dependent on ER/mGluR signaling, were found in striatal 
neurons   [ 68 ]  . Moreover, opposing ER/mGluR processes related 

to CREB phosphorylation were similarly segregated by expres-
sion of either caveolin-1 or caveolin-3. Surprisingly, however, 
the mGluRs responsible for membrane estrogen receptor signal-
ing in striatum were diff erent. In substitution of mGluR1a, ERα 
was functionally coupled to mGluR5 in striatal neurons, whereas 
ERα and ERβ were paired with mGluR3 as opposed to in hippo-
campus where these ERs activated mGluR2. These results are 
interesting as each of these 4 mGluRs is expressed in both hip-
pocampus and striatum. These data suggest ERs may be promis-
cuous regarding their coupling to various G protein-coupled 
receptors.
  Traffi  cking of ERα and ERβ to the membrane appears dependent 
upon palmitoylation. Palmitoylation is the reversible addition of 
the fatty acid palmitate to a protein. Palmitoylation aff ects the 
subcellular distribution and function of the modifi ed protein, 
including promoting protein localization to membranes. Palmi-
toylation occurs most commonly on cysteine residues, and is 
mediated by a family of proteins called palmitoyl acyltrans-
ferases (PATs). There are 23 unique PATs, each derived from a 
separate gene (DHHC 1–9, 11–24). Previous work in cell lines 
demonstrated ERα incorporates radiolabeled palmitate   [ 82 ]  . 
Substitution of the palmitoyl cysteine residue with alanine 
blocks both radiolabeling of ERα as well as membrane-initiated 
ERα responsiveness   [ 82      – 84 ]  . In neurons, recent fi ndings indicate 
that palmitoylation of ERα and ERβ is essential for membrane ER 
localization, association with caveolin proteins, and activation 
mGluR signaling   [ 81 ]  .
  Using a simplifi ed model system (i. e., cultured neurons) it has 
been possible to identify this potential mechanism of estrogen 
action in brain. Work from a number of labs has expanded the 
importance of these studies to the whole animal, to additional 
brain regions, and correspondingly, to additional behaviors. The 
fi rst report demonstrating the importance of ER/mGluR signal-
ing related to membrane estrogen action on the regulation of rat 
lordosis   [ 85 ]  . Specifi cally, within the arcuate nucleus, ERα acti-
vation of mGluR1 signaling is essential for full sexual receptivity. 
In a separate study, regulation of the estrous cycle by membrane 
ERs is dependent on ERα activation of mGluR1 in hypothalamic 
astrocytes   [ 86 ]  . Examining dorsal root ganglion neurons in a 
model of nociception, estrogen receptor activation of mGluR2/3 
attenuates ATP-induced increases in intracellular calcium via 
inhibition of L-type calcium channels   [ 87 ]  . Additionally, estro-
gen-induced masculinization of the medial preoptic area is 
dependent upon mGluR   [ 88 ]  . ER/mGluR signaling has also been 
demonstrated to aff ect spinogenesis   [ 89 ]  , and recent fi ndings 
indicate ER/mGluR coupling is responsible for estrogen-induced 
release of endocannabinoids in hippocampal neurons   [ 90 ]   and 
the potentiation of dopamine release in the female striatum fol-
lowing the administration of a psychostimulant   [ 91 ]  . Over the 
next several years, it is likely that other membrane actions of 
estradiol will also be shown dependent upon activation of 
mGluRs.

    Estrogens and Sympathetic Innervation in Female 
Reproductive System
 ▼
   In addition to the variety of mechanisms by which estrogens act 
in brain to regulate female reproductive behavior discussed 
above, estradiol infl uences the function of sympathetic neurons 
associated with reproductive organs in a variety of ways. The 
sympathetic system includes preganglionic neurons located in 
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the intermediolateral column at the thoracic and lumbar levels 
of the spinal cord, which synapse with postganglionic neurons 
located in sympathetic ganglia. Axonal projections of these neu-
rons are dependent on several guidance and survival signals 
provided by target organs   [ 92 ]  . These neurons display immuno-
reactivity for one or both of the ER subtypes   [ 93   ,  94 ]  . While 
almost all sympathetic neurons express ERβ, only about a third 
of these neurons express ERα   [ 95 ]  . In some instances sympa-
thetic neurons in lumbar paravertebral and prevertebral ganglia 
display cytoplasmic ER-immunoreactivity   [ 94   ,  96 ]  . This cyto-
plasmic distribution has been attributed to the presence of ERα 
isoforms lacking nuclear localization signals and thus unable to 
respond to estrogens   [ 97 ]  . The membrane ER, GPR30, may also 
mediate signaling. Immunohistochemical and in situ hybridiza-
tion studies reveal expression of GPR30 in some regions of brain, 
spinal cord and peripheral tissues   [ 98 ]  . However, it is not known 
if GPR30 are expressed or function in postganglionic sympa-
thetic neurons.
  Sympathetic fi bers that innervate the ovary originate mainly 
from the complex celiac-mesenteric ganglia. Ovarian innerva-
tion is associated with growing follicles, interstitial tissue and 
ovarian vasculature   [ 99 ]  . Two of the major neurotransmitters 
contained in the ovarian nerves, norepinephrine (NE) and 
vasoactive intestinal polypeptide (VIP), are considered modula-
tors of steroid production   [ 100 ]  . Several studies show the rele-
vance of neural sympathetic infl uence on follicular assembly, 
acquisition of responsiveness to gonadotropins and regulation of 
ovarian steroidogenesis   [ 101   ,  102 ]  .
  Estradiol produced by growing ovarian follicles has signifi cant 
paracrine and autocrine eff ects that can infl uence gonadal phys-
iology. Estrogen action is mediated by ERs in follicular structures 
and the stroma of the ovary. ERβ expression in granulosa cells is 
essential for cell diff erentiation and function   [ 103 ]  , while ERα 
expressed in thecal and interstitial cells are crucial for steroido-
genesis   [ 104 ]  .
  Some eff ects of estradiol on sympathetic innervation are medi-
ated by changes in the expression of neurotrophins, including 
nerve growth factor (NGF), a signaling molecule involved in sur-
vival and diff erentiation of sympathetic and sensorial neurons. 
In the rat ovary, neurotrophins are produced in cells of the fol-
licular wall and are responsible for the development of ovarian 
sympathetic innervation   [ 105 ]  . The actions of these neuro-
trophins are mediated by 2 receptors: 1) the 75 kDa low-affi  nity 
neurotrophin receptor (p75NGFR), which displays rapid associa-
tion and dissociation with most members of the neurotrophin 
family and 2) a high-affi  nity tyrosine kinase (TrkA) receptor, 
which binds NGF more specifi cally but with slow kinetics   [ 106 ]  . 
Estrogen-responsive elements have been identifi ed in many of 
the genes that code for neurotrophins or their receptors   [ 107 ]  . 
NGF production induced by estradiol exposure may diff er 
depending on the tissue being analyzed   [ 108 ]  . In addition, vari-
ations in estrogen levels alter neurotrophin receptor expression 
in sympathetic neurons, thus modulating neurotrophin respon-
siveness. This neurotrophin response varies with the neuronal 
population analyzed, the doses administered and the physiolog-
ical status of animals (e. g., prepubertal, adult cyclic, or adult 
pregnant rat)   [ 94   ,  109 ]  .
  Mounting evidence indicates that changes in estrogen signaling 
and adrenergic innervation can induce alterations in sympa-
thetic tone. The most dramatic modifi cations are seen in the 
myometrial layer of uterus, where variations in levels of estro-

gens during the rodent estrous cycle and pregnancy induce 
changes in sympathetic nerve density, including a progressive 
loss of sympathetic activity at late gestation   [ 110 ]  . In the ovary, 
estradiol treatment induces an augmented synthesis of NGF 
associated with an increase in norepinephrine content that can 
induce long-lasting eff ects on the sympathetic innervation of 
the ovaries. These changes alter ovarian morphology and func-
tion; induce the development and maintenance of cystic folli-
cles, and cause anovulation and alterations in estrous cyclicity 
  [ 111   ,  112 ]  . Similar changes are found in ovaries from women 
with polycystic ovary syndrome (PCOS), a common cause of 
infertility during reproductive age   [ 113 ]  . In animal models of 
PCOS, the eff ects induced by estradiol exposure can be partially 
reversed by surgical sympathectomy   [ 111   ,  114 ]  . A potential con-
tribution of the sympathetic system to PCOS has been suggested 
given that polycystic ovaries show an increase in the number of 
sympathetic fi bers   [ 115 ]   and ovarian wedge resection or laparo-
scopic laser cauterization are eff ective in increasing the ovula-
tory response in women with PCOS   [ 116 ]  . These fi ndings raise 
the possibility that sympathetic input may play a role in the 
development and maintenance of polycystic ovaries in PCOS 
women.
  In summary, estradiol can regulate several aspects of sympa-
thetic neuronal function through a variety of mechanisms. Neu-
ronal target tissues can be infl uenced by these estradiol-induced 
changes. While estrogens can have direct eff ects by acting 
through neuronal ERs, they can also act indirectly to elicit 
changes in production of survival signals in target organs that 
aff ect the function of subpopulations of neurons. Knowledge of 
the basic mechanisms of this crosstalk is essential in under-
standing the pathophysiological aspects involved in the devel-
opment and maintenance of complex hormone-dependent 
disorders aff ecting human health.

    Conclusions
 ▼
   The research outlined in this review (e. g., mechanisms of PR 
activation, transcriptional coactivators, membrane/nuclear sig-
naling, neuronal feedback to the reproductive organs) refl ects 
how far the fi eld of neuroendocrinology has progressed over the 
last several years. Clearly, steroid hormone action in the nervous 
system is not a simple on/off  activational relay. Based upon the 
role these hormones play in a diversity of physiological 
responses, this is not surprising. Over the next several years, we 
can expect basic science to provide additional breakthroughs as 
these fi ndings are integrated into a comprehensive study of 
endocrine and neuroendocrine responsiveness. This work will 
ultimately impact the treatment of various hormonal and meta-
bolic disorders.
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