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Steroid hormones act in specific regions of the brain to alter behaviour and physiology.

Although it has been well established that the bioavailability of the steroid and the expression

of its receptor is critical for understanding steroid action in the brain, the importance of nuclear

receptor coactivators in the brain is becoming more apparent. The present review focuses on

the function of the p160 family of coactivators, which includes steroid receptor coactivator-1

(SRC-1), SRC-2 and SRC-3, in steroid receptor action in the brain. The expression, regulation and

function of these coactivators in steroid-dependent gene expression in both brain and behaviour

are discussed.
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Steroid hormones act in the brain to profoundly influence behav-

iour and physiology. These hormones elicit many of their biological

effects by binding to their respective receptors, which are members

of the steroid/nuclear receptor superfamily of transcriptional activa-

tors. Receptors for oestrogens (ER), progestins (PR) and androgens

(AR) can act in a classic genomic mechanism of action by binding

directly to target DNA to alter transcription (1). In addition, these

receptors can act in a rapid, nonclassical manner, involving recep-

tors located at the membrane that activate intracellular signalling

pathways in the brain (2–7). In the classic genomic mechanism of

action, nuclear receptor coregulators enhance (coactivators) or

repress (corepressors) the transcriptional activity of steroid recep-

tors. Over 350 coregulators have been identified to function with

the large superfamily of nuclear receptors (8). Knowledge of the

function of these coregulators in behaviour, physiology and disease

is growing rapidly. The present review focuses on the role of the

p160 steroid receptor coactivator family in the classic genomic

mechanism of ER and PR action in the brain and the regulation of

behaviour.

Genomic mechanisms of ER and PR action

ER and PR, as well as other steroid receptors, have a modular

domain structure consisting of a highly variable amino-terminal

region (N-domain), a conserved central DNA-binding domain and a

carboxy-terminal ligand binding domain (1,9). In general, steroid

receptors have two transcriptional activation domains in the amino

(AF-1) and carboxyl (AF-2) termini (10). Intracellular ER are

expressed as two subtypes, a and b, which are transcribed from

different genes (11,12). These subtypes differ in their abilities to

bind different ligands and regulate transcription (13,14), distribution

in the brain (15–18) and regulation of behaviour (19–23). In addi-

tion, there are ER splice variants (24–26) that bind differentially

with coactivators (27) and may provide another level of regulation.

In most species, PR are expressed in two forms, the full-length

PR-B and the N-terminally truncated PR-A, which are encoded by

the same gene but are under the regulation of alternate promoters

and internal translation start sites (28,29). Under certain cell and

promoter contexts, human PR-B is a stronger transcriptional activa-

tor than PR-A (30–32) and PR-A can repress the transcriptional

activity of PR-B. These differences are most likely the result of an

additional AF domain in the N-terminus of PR-B (33) and a tran-

scriptional inhibitory region that has been identified in PR-A

(32,34), respectively. In further support of these differences in PR-A

and PR-B, these two PR isoforms appear to have distinct functions

in reproductive behaviour and physiology (35,36).

In the classic, ligand-dependent, genomic mechanism of action

of ER, PR and other steroid receptors, they are complexed with sev-

eral chaperone molecules, including heat shock proteins (hsp), in

the absence of hormone. Upon binding hormone, receptors undergo



a conformational change that causes the dissociation of hsp, allow-

ing receptors to dimerise (37). Activated receptors bind directly to

specific steroid response elements (SRE) and SRE-like sequences in

the promoter regions of target genes (1,9). Binding of receptors to

DNA increases or decreases gene transcription by altering the rate

of recruitment of general transcription factors and influencing the

recruitment of RNA polymerase II to the initiation site (38,39). It is

generally considered that oestrogens and progestins can act in the

brain via their respective receptors to alter neuronal gene tran-

scription in a fashion similar to that described above, resulting in

profound changes in behaviour and physiology (4,40,41).

Nuclear receptor coregulators

Coregulators consist of coactivators and corepressors that are

required for efficient transcriptional regulation by nuclear receptors

(8,42). Corepressors and their complexes associate with nuclear

receptors when unliganded or bound to antagonists and serve to

repress nuclear receptor transcription by recruiting corepressor

complexes to the cis-active elements in the promoter and enhanc-

ers of target genes (42). Nuclear receptor coactivators, which are

the focus of the present review, dramatically enhance the transcrip-

tional activity of ER and PR, as well as other nuclear receptors, by

acting as bridging molecules between the receptor and the general

transcription machinery and modifying chromatin within the pro-

moter and enhancer regions by histone acetylation, methylation

and phosphorylation (42,43). Under most conditions, steroid recep-

tors interact with coactivators in the presence of an agonist but

not in the absence of ligand or in the presence of an antagonist or

a selective receptor modulator (44–47); but see also additional

studies (48–50). In vitro studies indicate that recruitment of nuclear

receptor coactivators is rate-limiting in steroid receptor-mediated

gene transcription (42,51). In further support of the importance of

nuclear receptor coactivators in steroid-dependent transcription

in vitro, squelching, or the repression of the transcriptional activity

of one steroid receptor by another, is reversed by the addition of

coactivators (44). Thus, a critical component of efficient steroid

dependent transcription is the recruitment by receptors of nuclear

receptor coactivators to the complex (8,42). Finally, the significance

of both coactivators and corepressors in a variety of diseases,

including hormone-dependent cancer and some neurological disor-

ders, is becoming more apparent (8).

The p160 steroid receptor coactivator (SRC) family

The SRC family of p160 proteins consists of SRC-1 (NcoA-1), SRC-2

(GRIP1/TIF2/NCoA-2) and SRC-3 (AIB1/TRAM-1/ACTR/RAC3/pCIP).

Nuclear receptor coactivators, including the SRC coactivator family,

share a general set of characteristics. The SRC family of coactiva-

tors physically interacts with steroid receptors, including ER, PR, AR

and receptors for glucocorticoids, in a ligand-dependent manner

(43). The SRCs physically interact with agonist-bound receptors

through centrally-located multiple LXXLL motifs (L, leucine; X, any

amino acid) that make up nuclear receptor boxes. The SRCs and

other coactivators do not bind DNA and thus distinguish them from

traditional transcription factors. The C-terminus of the SRCs

contains two activation domains: AD-1 and AD-2. The N-terminus

contains a third activation domain (AD-3) and a basic helix loop

helix-Per Arnt Sims (bHLH-PAS) motif, which is the most conserved

domain within this family of proteins. The activation domains inter-

act with secondary coactivators known as co-coactivators (43).

These co-coactivators modify chromatin to facilitate binding of reg-

ulatory proteins and general transcription factors.

The p160 SRC family in reproductive physiology and
behaviour

Expression and regulation in the brain

Sex steroids, including oestrogens, progestins and androgens, are

required for brain development and reproductive behaviour in

rodents and birds. Therefore, both rodents and birds represent

excellent models for studying coactivator function in the brain. In

male and female rodents, SRC-1 mRNA and protein are expressed

at high levels in the cortex, hippocampus, cerebellum and hypothal-

amus (52–58,59: 94). In addition, the SRC-1 isoform, full length

SRC-1a, is found in high levels in the rodent hypothalamus,

whereas levels of the C-terminally truncated SRC-1e are higher in

the nucleus accumbens, thalamus and amygdala (54). Recently, this

SRC-1a : SRC-1e ratio has been shifted in the central nucleus of

the amygdala using antisense targeting the SRC-1e isoform, which

may prove valuable for studying the functions of these SRC iso-

forms in the brain (60). The expression of SRC-1 in the female rat

brain appears to decline as the animal ages, suggesting a loss of

steroid sensitivity (61). SRC-2 is highly expressed throughout the

hippocampus, amygdala and hypothalamus, including the medial

preoptic area (MPOA), ventral medial nucleus (VMN), arcuate

nucleus (ARC), bed nucleus of the stria terminalis, supraoptic

nucleus and suprachiasmatic nucleus (58,62–64). Although it is not

known whether a sex difference exists, SRC-3 is expressed predomi-

nantly in the hippocampus and very sparsely in the hypothalamus

in both male and female rodents (58,64).

The avian brain provides an excellent model for studying steroid

action since singing and nonsinging birds respond to steroids.

Songbirds have a specific group of interconnected nuclei called the

song control system that are required for singing and are sexually

dimorphic and steroid-sensitive (65). In the songbird zebra finch,

AR and ER are expressed in the song control nuclei from early

post-hatching ages (66–68). Injection of 17b-oestradiol in early

post-hatching females masculinises the song system and makes the

females capable of singing as adults (69–72). Although the organi-

sational effects of oestrogens are limited to early development in

zebra finches, in other songbirds, such as canaries, manipulation of

these hormones during adulthood affects the size of song nuclei

and song (73). In the quail, a nonsinging bird, steroids regulate

both appetitive and consummatory (copulatory) male sexual behav-

iour (74–77). In males, AR and ER are expressed in the medial pre-

optic nucleus (POM) of quail and are required for both aspects of

sexual behaviour (74,78). Members of the p160 family of steroid

receptor coactivators, SRC-1 and SRC-2, are expressed in both
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songbirds and nonsinging birds. SRC-1 mRNA is expressed as early

as post-hatching day 1 in the telencephalon of zebra finches, and

in the song control nuclei and hypothalami of adult canaries and

zebra finches (79,80). Interestingly, SRC-1 mRNA and protein show

a male-biased expression in the song nucleus HVC of adult canaries

and zebra finches, respectively (79,80). In the quail brain, SRC-1 is

expressed in the steroid sensitive areas, including the POM and bed

nucleus of stria terminalis (79). Similar to SRC-1, quail POM

expresses SRC-2 protein in a level that is similar in males and

females (81).

For coactivators to function with steroid receptors, they must be

expressed in the same cells. Oestradiol-priming dramatically increases

the expression of PR in a variety of rodent brain regions, including

the MPOA, VMN, ARC and the midbrain central grey (82–87). We

found that SRC-1 and SRC-2 are expressed in the majority of oestra-

diol-induced PR cells in regions involved in female reproduction,

including the VMN, MPOA and ARC in rats and mice (62,88,89). Given

that almost all oestradiol-induced PR cells in the hypothalamus con-

tain ERa (84,85), these findings suggest that these coexpressing cells

represent functional sites of interaction between steroid receptors

and coactivators in the brain (62,88,89). In further support, SRC-1

was found to be expressed in oestrogen-sensitive pro-opiomelano-

cortin and steroidogenic factor-1 neurones in the arcuate nucleus

and ventromedial hypothalamus (VMH), respectively (90).

It is assumed that coactivators are modulators of cellular respon-

siveness to steroids. In support, SRC-1 knockout mice, although fer-

tile, have decreased responsiveness in progestin target tissues (91)

and partial resistance to thyroid hormone (92). It is important to

note that, in these mice, SRC-2 is up-regulated in steroid sensitive

tissues, including the brain and testes, suggesting that increased

expression of SRC-2 compensates for the loss of SRC-1 (91). There-

fore, studying the regulation of coactivator expression is essential

for understanding hormone action in the brain. A number of studies

indicate that hormones can regulate coactivator expression in rodent

and bird brains. In rodents, SRC-1 is expressed in a sexually dimor-

phic manner in the pituitary gland, with males having higher mRNA

(52) and protein (93) levels than females. In further support, male

rodents have higher levels of SRC-1 than females in a number of

brain regions, including the dorsomedial hypothalamus, VMH and

paraventricular nucleus (94). Ovariectomy decreases SRC-1 expres-

sion in the VMH, whereas oestradiol reverses this effect (95). In the

hypothalamus of cycling female rats, SRC-1 levels were lowest dur-

ing di-oestrus, and highest at pro-oestrus and oestrus, suggesting

that ovarian hormones up-regulate SRC-1 (96). By contrast, ovariec-

tomy did not alter SRC-1 levels in the hippocampus, suggesting that

ovarian hormones do not regulate SRC-1 expression in this brain

region (97). Interestingly, the endocrine disruptor 4-methylbenzylid-

ene camphor (4-MBC), which has oestrogenic activity and impairs

the thyroid axis, increases SRC-1 mRNA in the VMH and MPOA of

female rats (98). Exposure to another endocrine disruptor, 3-benzy-

lidene camphor (3-BC), during early development through adulthood

increases SRC-1 mRNA levels in the MPOA of both males and females

(99). These effects of 4-MBC and 3-BC on SRC-1 could enhance their

oestrogenic effects and alter other nuclear receptor signalling path-

ways. Testosterone treatment does not alter SRC-1 expression in the

MPOA, bed nucleus of the stria terminalis (BNST), ARC and amygdala

of castrated hamsters (100). However, testosterone decreases SRC-2

expression in the hypothalamus of male rats (63). Finally, thyroid

hormone decreases SRC-1 expression in rat cortex and dentate gyrus

(101) and neonatal mouse cerebellum (102). In adult birds, testoster-

one increases SRC-1 expression in the quail hypothalamus (103),

whereas the administration of oestradiol, testosterone or aromatase

inhibitor has no effect on SRC-1 expression in zebra finches (80).

In addition to gonadal steroids, it appears that glucocorticoids

and stress can influence SRC-1 expression. Treatment of male rats

with the synthetic glucocorticoid, dexamethasone, reduces SRC-1

mRNA in the brain but does not affect the other members of the

p160 family of coactivators, SRC-2 and SRC-3 (104). In further sup-

port, adrenalectomised male rats exposed to high levels of cortico-

sterone have decreased SRC-1e mRNA levels in the anterior

pituitary but, interestingly, no changes were detected in the hippo-

campus (105). In rats, acute restraint stress decreases SRC-1 expres-

sion in the male and female hypothalamus and male frontal cortex,

and increases SRC-1 levels in the male pituitary and the female

hippocampus (93). Taken together, these studies suggest that gluco-

corticoids and stress may alter brain function by influencing coacti-

vator expression in a brain region- and sex-specific manner.

Daylength has profound effects on reproduction and other neu-

roendocrine events (106). In male Siberian hamsters exposed to

short days, we found reduced SRC-1 expression in the posteromedi-

al BNST and posterodorsal medial amygdala (100). In addition, SRC-

1 expression in the hippocampus, hindbrain and optic lobes change

through the day in Japanese quail (103,107). Given that both Sibe-

rian hamsters and Japanese quail have seasonal cycles, these find-

ings suggest that this photoperiodic regulation of SRC-1

contributes to androgen regulation of seasonal reproduction.

An increasing number of novel functions are being attributed to

the p160 family of coactivators. For example, SRC-1 is predomi-

nantly expressed in neuronal lineage cell lines during neural stem

cell differentiation (108). In addition, this expression of SRC-1 is

higher in mature neurones than immature neurones, suggesting a

role for SRC-1 in the differentiation of neural stem cells (108).

Further investigation of coactivator expression will be essential to

fully understand their function in hormone action.

In addition to regulation of coactivator expression, functional

interaction of coactivators with receptors can be affected by post-

translational modifications, such as phosphorylation, methylation

and acetylation of coactivators (109). For example, SRC-1, SRC-2

and SRC-3 undergo phosphorylation at different sites (110–114),

which can alter the conformation, stability and activity of these

proteins (109,110). Given that these posttranslational modifications

have been studied in cell culture systems, it will be important in

future studies to explore whether these modifications occur in the

brain and impact behaviour.

Regulation of steroid-dependent gene expression in the
brain by coactivators

A classic example of steroid-dependent gene expression is the oes-

tradiol-induction of PR in a variety of oestrogen-responsive tissues,
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including the brain, breast and uterus (82–87). Induction of PR

expression by oestradiol in the VMH is important for steroid-depen-

dent female sexual behaviour in rodents (115). Therefore, we tested

the hypothesis that SRC-1, along with the co-coactivator CREB-

binding protein (CBP), is critical for modulating ER-mediated trans-

activation of the PR gene in the VMN. Infusions of antisense to

SRC-1 and CBP mRNA into the VMN of adult female rats reduced

the expression of ER-mediated activation of PR gene expression

compared to controls (56). These findings extend previous in vitro
studies indicating that SRC-1 and CBP act together to modulate ER

and PR function (116,117). Another study in rodent brain supports

these findings with respect to SRC-1 function in the ER-mediated

induction of PR in the VMN, extending them to include a role for

SRC-2 but not SRC-3 (64). In a mouse hypothalamic neuronal cell

line, ERb bound to the ERb agonist, 3b-diol, increased oxytocin

gene mRNA levels and the occupancy of the oxytocin gene pro-

moter by SRC-1 and CBP (118). These results suggest that SRC-1

and CBP form a coactivator complex that regulates oxytocin gene

expression (118) and support the findings reported above showing

that SRC-1 and CBP function in ER-mediated induction of PR in

the brain (56).

In male quails, the volume of the POM, a critical brain region in

male sexual behaviour, and aromatase expression is increased by

testosterone treatment within 14 and 2 days, respectively (74).

Interestingly, knocking down SRC-1 by antisense decreases the tes-

tosterone-dependent POM volume and aromatase immunoreactivity

in male quails, suggesting a role for SRC-1 in testosterone-induced

changes in brain structure and gene expression in birds (119).

Although not a member of the p160 family of coactivators, another

steroid receptor coactivator, ribosomal protein L7 (RPL7, aka L7/

SPA), has been well-studied in the bird brain. RPL7 is part of the

ribosomal complex required for transcription and translation (120)

and has been shown to be a coactivator for ERa, PR and vitamin D

receptor (121,122). In the song system of zebra finches, RPL7 pro-

tein shows a greater expression at posthatch day 1 and in adult

males compared to females (123). Antisense administration to RPL7

mRNA increased neuronal death in HVC and Area X, suggesting a

role for this coactivator in neuroprotection (124). Similar effects of

reducing RPL7 were observed in neuronal cultures from posthatch

day 1 males and females, with neuronal loss being greater in males

compared to females. Oestradiol treatment prevented the neuronal

loss caused by antisense to RPL7, suggesting that the neuroprotec-

tive effects of oestradiol are not dependent on ERa in this model

(124,125).

In further support of a role for the p160 family of coactivators

in modulating ER action in the brain, studies have recently been

performed in human astrocytoma cell lines. Oestradiol treatment

increases the number of cells in two (U373 and D54) astrocytoma

cell lines (126). This effect appears to be mediated by ERa, given
that the ERa agonist (propyl-pyrazole-triol; PPT), but not the ERb
agonist (diarylpropionitrile), mimicked the effects of oestradiol on

cell proliferation. Interestingly, coactivator silencing by RNA inter-

ference of SRC-1 (but not SRC-3) blocked the PPT-induced increase

in cell number, suggesting that SRC-1 regulates the ERa-mediated
increase in cell number in these astrocytoma cell lines (126). In a

related study, progesterone increases vascular endothelial growth

factor expression (VEGF) in this D54 astrocytoma cell line (127).

Silencing of SRC-1 reduced VEGF protein levels following progester-

one treatment, suggesting that SRC-1 is important in modulating

the expression of this progestin sensitive gene (127). Future studies

in the brain and cell lines will be critical for further determining

the function of coactivators in modulating steroid action in the

brain.

Coactivators modulate steroid-dependent behaviours

Given that nuclear receptor coactivators appear to be essential for

hormone-dependent gene expression in the brain, we tested the

hypothesis that coactivators act in the brain to modulate the

expression of hormone-dependent behaviours (56,128). Female rats

treated with antisense to both SRC-1 and CBP mRNA into the VMN

showed lower levels of steroid-dependent lordosis compared to

scrambled-treated controls (56). Another study supported these

findings with SRC-1 and extended them to include a role for SRC-2

in hormone-dependent lordosis (64). In further support of the gene

expression studies discussed above, SRC-3 did not appear to func-

tion in the brain in steroid-dependent lordosis (64). Given that ERa
(and not ERb) appears to mediate female sexual behaviour in rats

(129), these findings suggest that SRC-1 and SRC-2 are functioning

with ERa to elicit these effects on behaviour.

One limitation of the behavioural experiments discussed above is

that they do not isolate the effects of coactivators on specific ER-

and PR-dependent aspects of female sexual behaviour. Therefore,

we designed experiments aiming to investigate whether coactiva-

tors act specifically with ER or PR in the brain to influence behav-

iour in rats (128). To test the hypothesis that coactivators modulate

ER-mediated aspects of female sexual behaviour, animals were

injected with two slightly higher doses of oestradiol alone, which

elicit lordosis (41). Antisense to SRC-1 and CBP infused into the

VMN of animals treated with oestradiol decreased the frequency

and intensity of lordosis, suggesting that these coactivators modu-

late ER-mediated aspects of female sexual behaviour (128). To

investigate whether coactivators act with PR in the brain to influ-

ence behaviour, we took advantage of the fact that proceptive

behaviours by the female, such as ear-wiggling and hopping and

darting that serve to solicit interaction by the male, are PR-depen-

dent (130,131). In this experiment, antisense to SRC-1 and CBP

mRNA was infused into the VMN after priming with oestradiol

around the time of progesterone administration. This timing of co-

activator antisense infusion allowed for the disruption of PR activ-

ity but did not alter induction of PR by oestradiol. Females treated

with antisense to coactivators had a reduced frequency of PR-

dependent ear-wiggling and hopping and darting but not PR-

dependent receptivity (128). These findings suggest that a reduction

of SRC-1 by antisense disrupted the activity of PR signalling path-

way(s) influencing proceptivity, whereas alternate PR signalling

pathways that regulate PR-dependent receptivity remained intact

and functional. Thus, it appears that coactivators function in the

brain to modulate both PR- and ER-specific aspects of steroid-

dependent female sexual behaviours in rodents.
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Studies in male quails provide further support for a role of SRC-

1 and SRC-2 in regulating behaviour. Antisense to SRC-1 in the

POM of quail inhibited both AR- and ER-mediated sexual behaviour

(132). In quails, strutting and crowing by males as responses

towards females are androgen dependent, whereas mount attempts,

mounts and cloacal contact movements by the male are oestrogen-

dependent (76,77). Testosterone injection induces these behaviours

by directly acting on AR and on ER following the aromatisation of

testosterone to oestrogens. Antisense to SRC-1 blocked all of these

testosterone-mediated male sexual behaviours, which were rein-

stated after terminating the antisense treatment (132). SRC-2 is

also required in reproductive behaviour, as demonstrated by a

reduction in the size of the POM, as well as a decrease in testoster-

one-induced male sexual behaviour, following SRC-2 antisense

injection into the third ventricle (81).

Coactivators from brain associate with ER and PR

As noted above, one of the criteria of nuclear receptor coactivators

is that they physically associate with receptors. To test the hypoth-

eses that members of the p160 family of steroid receptor coactiva-

tors from brain physically associate with ER and PR subtypes in a

ligand-dependent manner, we developed pull-down assays with

brain tissue from female rodents.

SRC-1 from rat hypothalamic or hippocampal extracts interacted

with Flag-tagged ERa and ERb when bound to oestradiol, which

was confirmed by mass spectrometry (133). Little to no association

of SRC-1 from brain with ERa or ERb was detected in the absence

of ligand or in the presence of tamoxifen, a selective ER modulator

(SERM). These findings suggest that SRC-1 from brain interact with

ER in a ligand-dependent manner and that the SERM tamoxifen

functions as an antagonist in this assay to prevent receptor-coacti-

vator interactions. In further support, the ERa agonist, PPT, pro-

moted physical association between ERa and SRC-1 in the

hypothalamus, as detected by co-immunoprecipitation (90). These

results support our previous findings that SRC-1 action in the

hypothalamus is important for maximal ER-mediated transactiva-

tion of the PR gene and expression of female sexual behaviour

(56,128). SRC-1 may function with both ER subtypes in the hippo-

campus to differentially modulate the effects of oestrogens on cog-

nition and stress (19,23,134–137). Interestingly, SRC-1 from the

hippocampus interacted equally with ERa and ERb, whereas SRC-1

obtained from hypothalamic extracts interacted more with ERa
than with ERb, suggesting that other cofactors involved in these

protein–protein interactions have different expression patterns in

these brain regions. In addition, it is possible that SRC-1 undergoes

distinct post-translational modifications (e.g. phosphorylation) in

these two brain regions, leading to differential interactions with

receptors.

Similar to findings with SRC-1 and as also confirmed by mass

spectrometry, SRC-2 from hypothalamus or hippocampus interacted

with ERa in a ligand-dependent manner (62). However, in dramatic

contrast to SRC-1, SRC-2 from the brain showed little to no inter-

actions with ERb under any ligand conditions. This weak association

of oestradiol-bound ERb with SRC-2 from brain is in contrast to

cell culture studies indicating that over-expressed SRC-2 interacts

with ERb (138–141). It is possible that the over-expression of coac-

tivators leads to altered interactions with receptors and/or that the

presence of other factors in the brain may mediate appropriate

receptor-coactivator associations. Taken together, these findings

suggest that it is important to use biologically-relevant tissue when

studying these receptor-coactivator interactions. Finally, these

differential interactions between SRC-2 and ERa and ERb may con-

tribute to the functional differences of these ER subtypes in the

brain (19). In future studies, it will be important to explore the

possibilities that coactivators, including the SRCs, function in non-

genomic oestrogen signalling pathways in the brain.

Interactions between coactivators from brain and the PR

isoforms have also been studied. SRC-1 from rat hypothalamic or

hippocampal extracts interacted with both GST-tagged PR-A and

PR-B when bound to the agonist R5020 but not in the absence of

ligand or in the presence of the selective PR modulator, RU486

(133). These agonist-dependent interactions between PR and SRC-1

from brain support our previous work indicating a role for hypotha-

lamic SRC-1 in PR-dependent female sexual behaviour (128) and

provide evidence that SRC-1 may contribute to progestin effects in

the hippocampus on memory (142,143). Interestingly, we found

that SRC-1 from the hypothalamus or hippocampus interacts more

with PR-B, than with PR-A. In regard to SRC-2, we found that this

coactivator interacted with PR-B (but not PR-A) in a ligand-depen-

dent manner. Furthermore, cell culture studies suggest that, under

certain circumstances, human PR-B is a stronger transcriptional

activator than PR-A (32,144,145), likely as a result of the additional

activation function (AF-3) of PR-B (33,146). Our findings showing

that these coactivators interact more with PR-B than PR-A are con-

sistent with some cell culture studies (145) and suggest a mecha-

nism by which PR-B may be a stronger transcriptional activator

than PR-A. However, it should be noted that, although studies

using PR-A and PR-B specific knockouts reveal that both receptors

are important for the full display of progesterone-facilitated lordo-

sis, PR-A has a greater role than PR-B in ligand-independent lordo-

sis facilitated by the cyclic AMP analogue, 8-bromo-cAMP (35). We

are currently using mouse PR and mouse brain tissue to explore

PR-coactivator interactions. In future studies, it will be important to

investigate the function of the SRCs and other coactivators in the

ligand-independent activation of PR in the rodent brain. Under-

standing how nuclear receptor coactivators interact with various

steroid receptors, and their subtypes, is critical for understanding

how hormones act in different brain regions to profoundly influ-

ence physiology and behaviour. Ultimately, mass spectrometry anal-

yses of these receptor-coactivator interactions using brain tissue

may allow the identification of novel coregulators involved in the

steroid receptor complex in the brain.

Conclusions

Following the discovery of the p160 family of coactivators and

other nuclear receptor coactivators, findings from in vitro and cell

culture studies have revealed much about the function of coacti-

vators in steroid action. More recently, approaches using animal
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models and neuronal cell lines have greatly expanded our knowl-

edge of coactivator function and enabled us to better understand

how these coactivators modulate steroid action in brain and influ-

ence complex behaviours. In addition, our recent receptor–coactiva-

tor interaction studies using rodent brains discussed above

highlight the significance of using biologically-relevant tissue for

exploring these important interactions. A critical question in neuro-

endocrinology is how individual cells respond to steroids and how

this responsiveness can change over time or with experience. The

regulation and expression of a large diversity of nuclear receptor

coactivators, including the p160 family of coactivators, provides a

mechanism by which individual cells in specific brain regions can

differentially respond to hormones and enable the adjustment of

this sensitivity to steroids in response to changes in external stim-

uli. In addition, recruitment of different members of the p160 fam-

ily of coactivators by receptors may lead to distinct signalling

pathways and behaviours (Fig. 1). In support, in vitro studies show

that ERs recruit either SRC-1 or SRC-2 depending on the oestrogen

response element (147). Future research using a variety of animal

models, including rodent and bird models, will continue to investi-

gate the function of these important regulatory proteins in behav-

iour, physiology and disease.
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