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Steroid Receptor Coactivator Family
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Synonyms

ACTR; AIB1; GRIP1; NcoA-1; NCoA-2; pCIP;
RAC3; SRC-1; SRC-2; SRC-3; TIF2; TRAM-1

Historical Background

Steroid hormones have profound effects on phys-
iology and behavior. Most of these biological
effects of steroid hormones are mediated through
their respective receptors, which are members of
the steroid/nuclear receptor superfamily of tran-
scriptional activators. These receptors can act in a
classic genomic mechanism by interacting
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directly with DNA to alter transcription or at the
membrane to rapidly activate cytoplasmic signal-
ing pathways (Tetel and Lange 2009). In the clas-
sic genomic mechanism of action, nuclear
receptor coregulators act to enhance
(coactivators) or repress (corepressors) the tran-
scriptional activity of these receptors. While over
300 coactivators have been identified to function
in receptor transcription, the role of these
coactivators in a wide range of human diseases
is becoming better understood (Lonard et al.
2010). This review will focus on the function of
the steroid receptor coactivator family as signal-
ing molecules in physiology and behavior and in
human disease.

p160 Steroid Receptor Coactivator
Family

The steroid receptor coactivator (SRC) family of
p160 proteins consists of SRC-1 (NcoA-1),
SRC-2 (GRIP1/TIF2/NCoA-2), and SRC-3
(AIB1/TRAM-1/ACTR/RAC3/pCIP). The SRC
family and the other nuclear receptor coactivators
share a common set of characteristics. The SRC
family of coactivators physically interacts with
steroid receptors, including receptors for andro-
gens (AR), estrogens (ER), progestins (PR), and
glucocorticoids (GR), in a ligand-dependent man-
ner (Johnson and O’Malley 2012). The SRCs
physically associate with agonist-bound receptors
through centrally located multiple LXXLL motifs
(L, leucine; X, any amino acid) that make up
nuclear receptor (NR) boxes. The SRCs, as well
as other coactivators, do not bind DNA and thus
differentiate them from traditional transcription
factors. The C-terminus of the SRCs contains
two activation domains (AD-1 and AD-2). The
N-terminus contains a third activation domain
(AD-3) and a bHLH-PAS motif (basic helix loop
helix-Per Arnt Sims), which is the most conserved
domain within this family of proteins. The activa-
tion domains interact with secondary coactivators
known as co-coactivators. These co-coactivators
act as bridging molecules between the receptor
and the general transcription machinery and mod-
ify chromatin within the promoter and enhancer

regions by histone acetylation and methylation
(Johnson and O’Malley 2012).

p160 SRC Family in Physiology

SRC-1
In addition to what is known about the molecular
mechanisms of the SRCs from in vitro studies,
more is being learned about their role in hormone
action in vivo. SRC-1 knockout mice, while fer-
tile, have decreased responsiveness in progestin
target tissues (Xu et al. 1998), partial resistance to
thyroid hormone (Weiss et al. 1999), and delayed
development of cerebellar Purkinje cells
(Nishihara et al. 2003). Interestingly, in these
mice SRC-2 is up-regulated in steroid-sensitive
tissues, including brain and testes, suggesting
that increased expression of SRC-2 compensates
for the loss of SRC-1 (Xu et al. 1998).

SRC-2
Studies of SRC-2 knockout mice reveal that this
coactivator is important in fertility and ductal
branching in mammary gland (Fernandez-
Valdivia et al. 2007). Disruption of SRC-2 expres-
sion in uterine PR-positive cells of PRCre/+SRC-
2flox/flox mice led to an early block in embryo
implantation (Fernandez-Valdivia et al. 2007).
Furthermore, removal of SRC-1 in PRCre/+SRC-
2flox/flox uteri caused a block in decidualization,
suggesting that both SRC-1 and SRC-2 are
required for complete PR-dependent
decidualization. In addition, SRC-2 is important
for PR action in mammary gland as demonstrated
by the lack of significant branching and alveolar
morphogenesis in the PRCre/+SRC-2flox/flox mam-
mary gland (Fernandez-Valdivia et al. 2007).
Microarray analysis of uteri from SRC-2 null
mice reveals that SRC-2 is involved in the ability
of progesterone to repress specific genes involved
in a variety of functions, including cell cycle and
immunity (Jeong et al. 2007).

SRC-3
Female SRC-3 null mice, while fertile, have
delayed puberty and longer estrous cycles, ovu-
late fewer eggs, and have impaired mammary
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gland development (Han et al. 2006). Studies in
SRC-3 null mice reveal that this coactivator is
critical for normal PR-dependent mammary
gland development and function (Han et al.
2006). Interestingly, gonadotropin-releasing hor-
mone (GnRH) can activate PR-dependent tran-
scription of a reporter gene in a pituitary cell line
(An et al. 2006). Knockdown of SRC-3 by siRNA
abolishes this effect, suggesting that SRC-3 is
required for this GnRH-induced activation of PR
(An et al. 2006).

p160 SRC Family in Metabolism and
Adipogenesis

SRC-1
All three members of the p160 family of
coactivators are involved in metabolic homeosta-
sis and adipogenesis, which increases risk
for clinical conditions including cardiovascular
disease and diabetes. SRC-1 is critical in
maintaining energy balance by regulating both
energy intake and expenditure (Louet and
O’Malley 2007). In support, SRC-1 knockout
mice have decreased energy expenditure and a
reduced thermogenic capacity and are, thus,
prone to obesity. One proposed mechanism for
SRC-1 in metabolism is through its interactions
with PPARg coactivator-1a (PGC-1a), a protein
important in the control of mitochondrial biogen-
esis and oxidative phosphorylation (Louet and
O’Malley 2007).

SRC-2
In contrast to SRC-1, SRC-2 knockout mice are
leaner compared with wild type mice and have an
increase in adaptive thermogenesis (Chopra et al.
2008). It appears that the absence of SRC-2
increases the interaction of SRC-1 with PGC-1a,
enhancing thermogenic activity. Thus, it has been
proposed that the ratio of SRC-1 and SRC-2 plays
a role in maintaining the balance of energy expen-
diture and adipogenesis through controlling the
metabolic activity of PGC-1a. In the liver,
SRC-2 acts as a coactivator for the nuclear recep-
tor RORa in the regulation of hepatic G6Pase, an
important regulator of glucose production.

Ablation of SRC-2 in mice leads to phenotypes
of Von Gierke’s disease, an inherited glycogen
storage disease (Chopra et al. 2008).

SRC-3
SRC-3 knockout mice have lower body fat con-
tent compared with wild type animals (Louet and
O’Malley 2007). SRC-3 controls the transcription
of PPARg2, important for adipocyte differentia-
tion through enhancing the CAAT enhancer bind-
ing protein-b (Chopra et al. 2008). In support,
adipocyte differentiation and adipogenesis were
impaired in both mouse embryonic fibroblasts
from cells isolated from SRC-3 knockout mice
and a knockdown of SRC-3 in 3 T3-L1 adipocyte
cells (Chopra et al. 2008). However, a knockdown
of SRC-1 and SRC-2 had little effect on adipocyte
differentiation. Taken together, these studies sug-
gest that all three members of the p160 family of
coactivators play an important role in energy
homeostasis and adipogenesis.

SRC Family Functions in Brain and
Behavior

Avariety of recent studies indicate that two of the
p160 SRC family members, SRC-1 and SRC-2,
are important for hormone action in brain and the
regulation of behavior (Tetel et al. 2009).

SRC-1 is expressed at high levels in the hypo-
thalamus, cortex, and hippocampus of rodents
(Tetel et al. 2009). Moreover, SRC-1 is expressed
in the majority of estradiol-induced PR cells in
regions involved in metabolism and female repro-
duction, including the ventromedial nucleus of the
hypothalamus (VMN), medial preoptic area, and
arcuate nucleus in rodents (Tognoni et al. 2011).
Furthermore, SRC-1 interacts with steroid recep-
tors; recent studies reveal that SRC-1 from brain
physically associates with ER and PR in a receptor
subtype- and brain region-specific manner
(Molenda-Figueira et al. 2008). SRC-1 is critical
for normal development of hormone-dependent
sexual differentiation of the brain and adult sexual
behavior (Auger et al. 2000). In the adult brain,
SRC-1 functions in the VMN to modulate
ER-mediated transactivation of the behaviorally
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relevant PR gene (Molenda et al. 2002). In addi-
tion, SRC-1 functions in distinct ER- and
PR-dependent aspects of female sexual behavior
(Molenda-Figueira et al. 2006). Interestingly,
reduction of SRC-1 expression in brain by anti-
sense altered PR function and reduced
PR-dependent proceptivity (behavior by the
female to solicit interaction by the male), but not
PR-dependent receptivity (Molenda-Figueira
et al. 2006). These findings suggest that reduction
of SRC-1 by antisense disrupted the activity of PR
signaling pathway(s) that influence(s) pro-
ceptivity, while alternate PR signaling pathways,
that regulate PR-dependent receptivity, remained
intact and functional.

SRC-2 is coexpressed with PR and ERa in
rodent hypothalamus and physically associates
with these receptors in a hormone-dependent
manner (Yore et al. 2010; Tognoni et al. 2011).
In further support of a role for SRC-2 in hormone
action in brain, SRC-2 functions in estradiol-
induction of hypothalamic PR and female sexual
behavior in mice and rats (Apostolakis et al.
2002). Interestingly, in contrast to the other mem-
bers of the SRC family, SRC-3 is only sparsely
expressed in the hypothalamus and does not
appear to modulate the expression of reproductive
behavior (Apostolakis et al. 2002).

p160 SRC Family in Breast and Prostate
Cancer

SRC-1
SRC-1 has been found to be elevated in breast
tumors and a strong predictor of breast cancer
recurrence and hormone-independent tumors. In
vitro studies demonstrate that SRC-1 promotes
cancer metastasis through the estrogenic pathway.
MCF-7 breast cancer cells over-expressed with
SRC-1 have increased expression of estrogen-
induced genes and enhanced estrogen-induced
cell growth. However, MCF-7 cells treated with
antisense against SRC-1 show a decrease in cell
proliferation and invasion, as well as a lower level
of SDF-1a, a protein that controls cell prolifera-
tion through autocrine and paracrine mechanisms
(Xu et al. 2009). These findings suggest that

SRC-1 increases breast cancer cell proliferation
through regulating the SDF-1a pathway.

SRC-1 promotes estrogen-independent breast
cancer metastasis through the integrin a5 (ITGA5)
signaling pathway. In ER-negative tumors, SRC-1
expression is positively correlated with ITGA5,
an important molecule involved in mediating cell
adhesion and migration (Qin et al. 2011). In fur-
ther support of SRC-1 promoting cancer prolifer-
ation through an estrogen-independent pathway,
ITGA5 promoter activity is enhanced by SRC-1.

In prostate cancer, SRC-1 is correlated with
increased tumor aggressiveness and promotes
cell proliferation by enhancing AR activation
and function (Agoulnik et al. 2006). The phos-
phorylation of SRC-1 by mitogen-activated pro-
tein kinase (MAPK) leads to an increase in AR
activity (Suzuki et al. 2003). Reduction of SRC-1
in AR-positive cell lines, but not in AR-negative
cell lines, resulted in decreased tumor prolifera-
tion, suggesting the major effect of SRC-1 is
through the androgenic pathway.

SRC-2
The role of SRC-2 in oncogenesis remains con-
troversial. While one study reported a correlation
of SRC-2 with cyclin D1 in ERa-positive breast
tumors, another study found no changes in SRC-2
levels (Xu et al. 2009). However, the over-
expression of SRC-2 in MCF-7 breast cancer
cells led to a decrease in cell proliferation and
invasion and a reduction in the expression of
ERa target genes. In prostate cancer, SRC-2
expression correlates with recurrence of the dis-
ease. The down-regulation of SRC-2 by antisense
reduced expression of AR-induced genes and
decreased cell proliferation in both
AR-dependent and AR-independent prostate can-
cer cell lines (Agoulnik et al. 2006).

SRC-3
SRC-3 (aka amplified in breast cancer-1, AIB1) is
highly over-expressed in breast cancer and is cor-
related with ER and PR expression and tumor size
(Anzick et al. 1997; Bautista et al. 1998). SRC-3
expression is also correlated with poor clinical
prognosis. Breast cancer cells transfected with
SRC-3 had enhanced estrogen-dependent
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transcription, suggesting that SRC-3 promotes
tumorigenesis through an estrogenic pathway
(Lanz et al. 2010). Several mechanisms have
been proposed on how SRC-3 acts to promote
cancer growth. SRC-3 regulates E2F1-mediated
cell cycle progression and GRB-2 associated
binding protein2, which activates the AKT/▶
mTOR pathway and increases cancer growth.
SRC-3 has also been shown to activate epidermal
growth factor receptor EGFR and ERBB2,
resulting in the hyperactivation of Akt and
MAPK which contributes to cancer proliferation,
growth, and migration (Yan et al. 2008). In further
support, Akt signaling is down-regulated in
SRC-3 knockout mice. In another study, SRC-3
increased PEA3 and AP-mediated matrix meta-
lloproteinase expression which promote breast
and prostate tumor cell metastasis (Yan
et al. 2008).

In prostate cancer, SRC-3 is correlated with
both tumor stage and poor clinical prognosis
(Culig et al. 2004). SRC-3 is involved in the
androgenic pathway by acting as a coactivator
for AR. However, SRC-3 is also involved in
androgen-independent cancer proliferation as the
down-regulation of SRC-3 in androgen-
insensitive prostate cancer cells also leads to a
decrease in proliferation (Zou et al. 2006).

Summary

The p160 family of nuclear receptor coactivators
has a critical role in modulating steroid receptor
action and thus the appropriate cellular response
to steroids. A variety of studies indicate that these
coactivators are essential in physiology, including
metabolism and adipogenesis. In addition, this
family of coactivators functions in brain to regu-
late important aspects of steroid action and the
regulation of behavior. Thus, it is no surprise
that alteration of the function of these molecules
can contribute to steroid-responsive cancers, such
as breast and prostate cancer, in profound ways.
The findings reviewed above indicate that each of
these members of the p160 family of coactivators
can mediate distinct signaling pathways of steroid
receptors. Therefore, understanding the

recruitment of different coactivator complexes to
the promoter, which is likely to be cell- and tissue-
specific, will be critical for understanding how
hormones regulate complex physiological and
behavioral events, as well as hormone-dependent
diseases.
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