V. Trigonometry, part 1

A. Angle measurement

The <u>standard position</u> for angles in the xy-plane is with the initial side on the positive x-axis and the counterclockwise direction taken to be positive.

Two common units for measuring angles are degrees and radians.

<u>Radians</u>. One radian is defined to be the angle subtended at the center by an arc of length r on a circle of radius r. The circumference of a circle of radius r has length $2\pi r$, so r units can be marked off " 2π times". In other words, 1 revolution = 2π radians.

Relation between degrees and radians:

Since 1 revolution = 360° = 2π radians, <u> 180° </u> = <u> π radians</u>. This gives the conversion relations:

To convert degrees to radians, multiply by $\frac{\pi \text{ radians}}{180^\circ}$

e.g.
$$45^\circ = 45^\circ \cdot \frac{\pi \text{ radians}}{180^\circ} = \frac{\pi}{4} \text{ radians}$$

To convert radians to degrees, multiply by $\frac{180^{\circ}}{\pi}$ radians

e.g.
$$-\frac{\pi}{3}$$
 radians = $-\frac{\pi}{3}$ radians $\cdot \frac{180}{\pi}$ = -60°.

In calculus, radian measure is used exclusively (because it simplifies the differentiation formulas for the trig. functions).

Examples: some angles in standard position.

1. If Θ is an acute angle (more than 0° but less than 90°), the trigonometric functions of Θ can be defined as ratios of sides in a right triangle having Θ as one angle. The six possible ratios give the six trig. functions.

sine of
$$\theta = \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}}$$
; cosecant of $\theta = \csc(\theta) = \frac{\text{hyp}}{\text{opp}}$
cosine of $\theta = \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}}$; secant of $\theta = \sec(\theta) = \frac{\text{hyp}}{\text{adj}}$
tangent of $\theta = \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}}$; cotangent of $\theta = \cot(\theta) = \frac{\text{adj}}{\text{opp}}$

Notes: We usually write $\sin \theta$ instead of $\sin(\theta)$, etc. Cotangent of θ is sometimes abbreviated $\operatorname{ctn}(\theta)$. Remember to think "sine of θ ", <u>not</u> "sine times θ "!! 2. <u>Reciprocal relations</u>: $\csc \varphi = \frac{1}{\sin \varphi}$ and $\sin \varphi = \frac{1}{\csc \varphi}$ $\sec \varphi = \frac{1}{\cos \varphi}$ and $\cos \varphi = \frac{1}{\sec \varphi}$ $\cot \varphi = \frac{1}{\tan \varphi}$ and $\tan \varphi = \frac{1}{\cot \varphi}$

Also note that $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and $\cot \theta = \frac{\cos \theta}{\sin \theta}$.

3. The most common triangles:

4. For other angles in right triangles, consult trig. tables or use a calculator. (Take care, however -- be sure you and your calculator agree on whether you're punching in degree measure or radian measure!)

1. Place the angle θ in standard position. Mark a point P:(x,y) on its terminal side. Let r be the distance from the origin to P. Then the six trig, functions of θ are defined by:

$$\sin \theta = \frac{y}{r}; \quad \cos \theta = \frac{x}{r}; \quad \tan \theta = \frac{y}{x};$$
$$\csc \theta = \frac{r}{y}; \quad \sec \theta = \frac{r}{x}; \quad \cot \theta = \frac{x}{y}.$$

provided the ratio in question is defined (does not have zero in the denominator).

Notes: When θ is an acute angle, this definition gives the same results as the definition in Section B.

If P is chosen so that r = 1, the formulas simplify; $\cos \theta$ and $\sin \theta$ are the x and y coordinates of the appropriate point on the unit circle $x^2 + y^2 = 1$.

2. Examples

3. Trig. functions at the popular angles

	0	<u>π</u> 6	<u>π</u> 4	<u>π</u> 3	<u>π</u> 2	π	$\frac{3\pi}{2}$
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1
COS	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
tan	0	$\frac{\sqrt{3}}{3}$	1	√3	undef'd	0	undef'd

4. <u>Reference angles</u>. If θ is not a quadrantal angle (the terminal

Examples:

		-				
sin +	 all +	side is not an axis), then				
cos, tan -		Trig. fn. of $\Theta = \pm$ same trig. fn. of reference				
tan +	COS +	angle for Θ ,				
sin, cos -	sin, tan -	and the choice of \pm is determined by the				
	ţ	chart at left. The reference angle for θ				

is the smallest <u>unsigned</u> angle between the terminal side of θ and the x-axis.

 $\frac{\Theta = \frac{3\pi}{4}}{1} \sin \frac{3\pi}{4} = +\sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}; \quad \cos \frac{3\pi}{4} = -\cos \frac{\pi}{4} = -\frac{1}{\sqrt{2}};$ $\tan \frac{3\pi}{4} = -\tan \frac{\pi}{4} = -1.$ reference angle = $\frac{\pi}{4}$

The trig functions of $\frac{11\pi}{6}$ are the same as those of $-\frac{\pi}{6}$, computed above.

This method is based on the following identities, which come from the definitions of the trig. functions:

```
sin(-\theta) = -sin \theta; cos(-\theta) = cos \theta;
sin(\theta+\pi) = -sin \theta; cos(\theta+\pi) = -cos \theta.
```

Also, note that the trig. functions are <u>periodic</u>: they repeat every 2π radians: $\sin(\theta + 2\pi) = \sin \theta$; $\cos(\theta + 2\pi) = \cos \theta$, etc. See the next handout, "Trigonometry, part 2, plus conic sections", for other trig. identities.

Exercises V_ABC

An airplane is flying over a house 1 mile from the spot where you're standing. At that instant, the plane's angle of elevation from your viewpoint is $\pi/6$ radians. Find the plane's altitude (in feet).

Answers to Exercises V 1.(a) $\pi/12$ (b) $5\pi/2$ 2.(a) 150° (b) -450° 3.(a) $-1/\sqrt{2}$, $-1/\sqrt{2}$, 1 (b) 1/2, $\sqrt{372}$, $1/\sqrt{3}$ (c) 0, -1, 0 (d) $-\sqrt{372}$, 1/2, $-\sqrt{3}$ 4. $-2/\sqrt{3}$, -2, $1/\sqrt{3}$ 5.(a) 3/5 (b) 4/5 (c) 3/46.(a) $(\text{side})^2 + 5^2 = 8^2$ so $(\text{side}) = \sqrt{64-25} = \sqrt{39}$ (b) 5/8 (c) $\sqrt{39}/8$ (d) $5/\sqrt{39}$ or $5\sqrt{39}/39$ 7. By ratios: θ is to angle of whole circle as 3 is to circumference, or $\frac{\theta}{2\pi} = \frac{3}{2\pi \cdot 2}$, so $\theta = \frac{3}{2}$. 8. $\tan \frac{\pi}{6} = \frac{\text{alt.}}{1 \text{ mi.}}$, so alt. $= \frac{\sqrt{3}}{3} \cdot 5280 \text{ ft.} = 1760\sqrt{3} \text{ ft.}$