V. Trigonometry, part 1

A. Angle measurement

The standard position for angles in the xy -plane is with the initial side on the positive x-axis and the counterclockwise direction taken to be positive.

Two common units for measuring angles are degrees and radians.

Degrees $360^{\circ}=1$ revolution, so $1^{\circ}=\frac{1}{360}$ th of a revolution.

Radians. One radian is defined to be the angle subtended at the center by an arc of length r on a circle of radius r. The circumference of a circle of radius r has length $2 \pi r$, so r units can be marked off " 2π times" . In other words, 1 revolution $=2 \pi$ radians.

Relation between degrees and radians:
Since 1 revolution $=360^{\circ}=2 \pi$ radians, $180^{\circ}=$ IIradians.
This gives the conversion relations:
To convert degrees to radians, multiply by $\frac{\pi \text { radians }}{}$, 180°

$$
\text { e.g. } 45^{\circ}=45^{\circ} \cdot \frac{\pi \text { radians }}{180^{\circ}}=\frac{\pi}{4} \text { radians } .
$$

To convert radians to degrees, multiply by $\frac{180^{\circ}}{\pi \text { radians }}$,

$$
\text { e.g. }-\frac{\pi}{3} \text { radians }=-\frac{\pi}{3} \text { radians } \cdot \frac{180^{\circ}}{\pi \text { radians }}=-60^{\circ} .
$$

In calculus, radian measure is used exclusively (because it simplifies the differentiation formulas for the trig. functions).

Examples: some angles in standard position.

1. If θ is an acute angle (more than 0° but less than 90°), the trigonometric functions of θ can be defined as ratios of sides in a right triangle having θ as one angle. The six possible ratios give the six trig. functions.

$$
\begin{aligned}
& \text { sine of } \theta=\sin (\theta)=\frac{\text { opposite }}{\text { hypotenuse }} ; \text { cosecant of } \theta=\csc (\theta)=\frac{\text { hyp }}{\text { opp }} \\
& \text { cosine of } \theta=\cos (\theta)=\frac{\text { adjacent }}{\text { hypotenuse }} ; \text { secant of } \theta=\sec (\theta)=\frac{\text { hyp }}{\text { adj }} \\
& \text { tangent of } \theta=\tan (\theta)=\frac{\text { opposite }}{\text { adjacent }} ; \text { cotangent of } \theta=\cot (\theta)=\frac{\text { adj }}{\text { opp }}
\end{aligned}
$$

Notes: We usually write $\sin \theta$ instead of $\sin (\theta)$, etc. Cotangent of θ is sometimes abbreviated $\operatorname{ctn}(\theta)$. Remember to think "sine of θ ", not "sine times θ "!!
2. Reciprocal relations: $\quad \csc \theta=\frac{1}{\sin \theta}$ and $\sin \theta=\frac{1}{\csc \theta}$

$$
\begin{aligned}
& \sec \theta=\frac{1}{\cos \theta} \text { and } \cos \theta=\frac{1}{\sec \theta} \\
& \cot \theta=\frac{1}{\tan \theta} \text { and } \tan \theta=\frac{1}{\cot \theta}
\end{aligned}
$$

Also note that $\tan \theta=\frac{\sin \theta}{\cos \theta}$ and $\cot \theta=\frac{\cos \theta}{\sin \theta}$.
3. The most common triangles:
"45-45-90"

$$
\frac{45^{\circ}}{1} 11 \sin 45^{\circ}=\cos 45^{\circ}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} ; \quad \tan 45^{\circ}=1
$$

$$
\begin{aligned}
& \sin 60^{\circ}=\cos 30^{\circ}=\frac{\sqrt{3}}{2} \\
& \sin 30^{\circ}=\cos 60^{\circ}=\frac{1}{2}
\end{aligned}
$$

4. For other angles in right triangles, consult trig. tables or use a calculator. (Take care, however -- be sure you and your calculator agree on whether you're punching in degree measure or radian measure!)

C. Trig, functions for general angles

1. Place the angle θ in standard position. Mark a point $P:(x, y)$ on its terminal side. Let r be the distance from the origin to P. Then the six trig. functions of θ are defined by:

$$
\begin{array}{ll}
\sin \theta=\frac{y}{r} ; \quad \cos \theta=\frac{x}{r} ; \quad \tan \theta=\frac{y}{x} ; \\
\csc \theta=\frac{r}{y} ; & \sec \theta=\frac{r}{x} ; \quad \cot \theta=\frac{x}{y} .
\end{array}
$$

provided the ratio in question is defined (does not have zero in the denominator).
Notes: When θ is an acute angle, this definition gives the same results as the definition in Section B.

If P is chosen so that $r=1$, the formulas simplify; $\cos \theta$ and $\sin \theta$ are the x and y coordinates of the appropriate point on the unit circle $x^{2}+y^{2}=1$.

2. Examples

$$
\cos \frac{3 \pi}{4}=\frac{-1}{\sqrt{2}} \text { or } \frac{-\sqrt{2}}{2}
$$

$$
\sin \frac{3 \pi}{4}=\frac{1}{\sqrt{2}} \text { or } \frac{\sqrt{2}}{2}
$$

3. Trig functions at the popular angles

	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$
\sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1
\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
\tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	undef'd	0	undef'd

4. Reference angles. If θ is not a quadrantal angle (the terminal side is not an axis), then

$\sin +$ $\cos , \tan -$	all +
$\tan +$	$\cos +$
$\sin , \cos -$	$\sin , \tan -$

Trig. in. of $\theta= \pm$ same trig. in. of reference angle for θ, and the choice of \pm is determined by the chart at left. The reference angle for θ
is the smallest unsigned angle between the terminal side of θ and the x -axis.

Examples:

$\sin \frac{3 \pi}{4}=+\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}} ; \quad \cos \frac{3 \pi}{4}=-\cos \frac{\pi}{4}=-\frac{1}{\sqrt{2}} ;$

$$
\tan \frac{3 \pi}{4}=-\tan \frac{\pi}{4}=-1
$$

reference angle $=\frac{\pi}{4}$

reference angle $=\frac{\pi}{6}$
The trig functions of $\frac{11 \pi}{6}$ are the same as those of $-\frac{\pi}{6}$, computed above.

This method is based on the following identities, which come from the definitions of the trig functions:

$$
\begin{array}{ll}
\sin (-\theta)=-\sin \theta ; & \cos (-\theta)=\cos \theta ; \\
\sin (\theta+\pi)=-\sin \theta ; & \cos (\theta+\pi)=-\cos \theta .
\end{array}
$$

Also, note that the trig. functions are periodic: they repeat every 2π radians: $\sin (\theta+2 \pi)=\sin \theta ; \cos (\theta+2 \pi)=\cos \theta$, etc.
See the next handout, "Trigonometry, part 2, plus conic sections", for other trig. identities.

Exercises V ABC

1. Convert to radians.
(a) 15°
(b) 450°
2. Convert to degrees.
(a) $5 \pi / 6$ radians
(b) $-5 \pi / 2$ radians
3. For each of the following angles, find $\sin \theta, \cos \theta, \tan \theta$. Use reference angles where appropriate.
(a) $5 \pi / 4$
(b) $-11 \pi / 6$
(c) 3π
(d) -60°
4. Find $\csc (4 \pi / 3), \sec (4 \pi / 3), \cot (4 \pi / 3)$.
5. Given:

Find (a) $\sin \theta$
(b) $\cos \theta$
(c) $\tan \theta$
6. Given:

Find (a) the length of the third side
(b) $\sin \theta$
(c) $\cos \theta$
(d) $\tan \theta$
7. In the diagram at right, find the radian measure of θ.
8.

An airplane is flying over a house 1 mile from the spot where you're standing. At that instant, the plane's angle of elevation from your viewpoint is $\pi / 6$ radians. Find the plane's altitude (in feet).

Answers to Exercises V

1.(a) $\pi / 12$
(b) $5 \pi / 2$
2.(a) 150°
(b) -450°
3.(a) $-1 / \sqrt{2},-1 / \sqrt{2}, 1$
(b) $1 / 2, \sqrt{372}, 1 / \sqrt{3}$
(c) $0,-1,0$
(d) $-\sqrt{3} / 2,1 / 2,-\sqrt{3}$
4. $-2 / \sqrt{3},-2,1 / \sqrt{3}$
5.(a) $3 / 5$ (b) $4 / 5$ (c) $3 / 4$
6.(a) $(\text { side })^{2}+5^{2}=8^{2}$ so (side) $=\sqrt{64-25}=\sqrt{39}$
$\begin{array}{ll}\text { (b) } 5 / 8 & \text { (c) } \sqrt{39} / 8\end{array}$
(d) $5 / \sqrt{39}$ or $5 \sqrt{39} / 39$
7. By ratios: θ is to angle of whole circle as 3 is to circumference,

$$
\text { or } \frac{\theta}{2 \pi}=\frac{3}{2 \pi \cdot 2} \text {, so } \theta=\frac{3}{2} \text {. }
$$

8. $\tan \frac{\pi}{6}=\frac{\text { alt. }}{1 \mathrm{mi} .}$, so alt. $=\frac{\sqrt{3}}{3} \cdot 5280 \mathrm{ft} .=1760 \sqrt{3} \mathrm{ft}$.
