VII. Inequalities and absolute value

- A. <u>Properties of inequalities</u> (stated for <, but corresponding rules hold for $> \le$, and \ge)
- 1. If a < b and c is any number, then a + c < b + c.
- 2. If a<b and c is <u>positive</u>, then ac<bc.
- 3. However, if a < b and c is <u>negative</u>, then ac > bc, i.e. the inequality is reversed.
- 4. If a<b and a and b are both positive or both negative, then 1/a > 1/b; the inequality reverses. (If they are of opposite signs, the inequality stays the same; positive > negative.)

For illustration, 3 < 5 so 3(4) < 5(4), but 3(-4) > 5(-4) and 1/3 > 1/5. 12 < 20 -12 > -20

B. <u>Solving inequalities</u> Working with inequalities is much like working with equations -- but note the differences expressed by properties 3 and 4 above.

<u>Examples</u>

1. Find all real numbers x satisfying 8x+2 < 3x-18.

8x+2 < 3x-18 8x-3x < -18-2 5x < -20 x < -4Geometrically: -4 0

2. Find all x satisfying 3x+2 < 5x-7.

 $\begin{array}{cccc} 3x+2 < 5x-7 & & Geometrically: \\ 3x-5x < -7-2 & & \\ -2x < -9 & \\ x > 9/2 \end{array} \end{array} Reverse the \\ inequality. 0 & 9/2 & x \end{array}$

3. Find all x satisfying $x(x-1) \le 6$.

$x(x-1) \le 6$	Proceed as for quadratic equat	ions:
$x^2 - x \le 6$	put all terms on one side with	0 on other.
$x^2 - x - 6 \le 0$	Then factor.	
$(x-3)(x+2) \le 0$		

Note that the expression on the left-hand side can change sign only where it passes through zero, namely at x = 3 and at x = -2. These two

points divide the x-axis into three regions:

In I, where x < -2, both (x-3) and (x+2) are negative. Therefore the product (x-3)(x+2) is positive.

In II, where -2 < x < 3, (x+2) is positive and (x-3) is negative, so their product is negative.

In III, where x > 3, both (x+2) and (x-3) are positive, so their product is positive.

 $\xrightarrow{(x-3)(x+2)}_{-2} \xrightarrow{(x-3)(x+2)}_{(x-3)(x+2)} \xrightarrow{(x-3)(x+2)}_{x}$

Thus the solution is $-2 \le x \le 3$.

Summarizing:

4. Find all $x: \frac{3x}{x-1} < \frac{x}{x+2} + 2$.

If we tried to clear fractions by multiplying by (x-1)(x+2) we'd have to divide into cases according to whether (x-1)(x+2) is positive or negative. It's easier to put all terms on one side and add fractions.

$$\frac{3x}{x-1} - \frac{x}{x+2} - 2 < 0$$

$$\frac{3x(x+2) - x(x-1) - 2(x-1)(x+2)}{(x-1)(x+2)} < 0$$

$$\frac{5x+4}{(x-1)(x+2)} < 0$$
Sign changes can occur when $5x+4 = 0 \dots x = -4/5$

$$x - 1 = 0 \dots x = 1$$

$$x + 2 = 0 \dots x = -2.$$
Four regions
to consider:
$$\frac{1}{-2} - \frac{11}{-4/5} = \frac{11}{x} + \frac{11}{x}$$

Solution from chart on next page: the inequality holds when x < -2 or -4/5 < x < 1.

	<u>x+2</u>	5x+4	<u>x-1</u>	(5x+4)/(x-1)(x+2)
x<-2	_			
-2 < x < -4/5	+			+
-4/5 < x < 1	+	+	. *	
x > 1	+	+		+

Exercises VII B Find all x satisfying the given inequalities.

- 1. 4x+3>03. $x^{2}-x-12<0$ 5. $(x-1)^{2}(x-2)^{4}>0$ 7. $\frac{(x-4)^{3}(x+2)}{(x-1)^{2}} \ge 0$ (x-1)^{2} (x-1)^{2} 2. 3x+2<4x-34. x(x+4)<-36. $(x-1)^{3}>0$ 8. $\frac{x-3}{x+1} < 2$
- 9. $(1/3)x^{-2/5}(x-7)^{-2} + 2x^{1/3}(x-7) > 0$

C. Absolute value

Geometrically, the <u>absolute value</u> of a real number a, denoted |a|, is the distance on a number line between 0 and a.

Algebraically,
$$|a| = \begin{cases} a & \text{if } a \ge 0 \\ -a & \text{if } a \le 0 \\ -a & \text{if } a \le 0 \\ \end{array}$$

e.g. $|2| = 2$; $|-3| = -(-3) = 3$; $|0| = 0$.
Note that $|a-b|$ is
the distance
between a and b.
 $-3 \qquad 0 \qquad 2$

$$|(-3) - 2| = 5$$

Examples 1. Find all x such that |x-3| = 2.

Algebraic solution: x-3 = 2 or x-3 = -2x = 5 or x = 1

Geometric solution:
distance between x and 3
equals 2; x = 1 or 5.
2. Find all x such that
$$|x-5| < 3$$
.
Algebraic: $-3 < x-5 < 3$
 $-3+5 < x < 3+5$
 $2 < x < 8$
Geometric: distance
between x and 5
is less than 3.
3. Find all x such that $|3x-10| > 2$.
Either $3x-10 > 2$ or $3x-10 < -2$
 $3x > 12$ or $3x < 8$
 $x > 4$ or $x < 8/3$
(Geometrically, distance between 3x and 10 is greater than 2.)
4. Find all x such that $\left|\frac{2}{1-x}\right| < 1$.
 $-1 < \frac{2}{1-x} < 1$
Taking reciprocals reverses the inequalities:
either $\frac{1}{-1} > \frac{1-x}{2}$ or $\frac{1-x}{2} > \frac{1}{1}$ subtract $1/2$
 $\frac{-3}{2} > \frac{-x}{2}$ or $\frac{-x}{2} > \frac{1}{2}$ mult. by -2

•

3 < x <u>or</u> x < 1 (reverse ineq.)

Useful properties:
$$|a| = |-a|$$
 $|a \cdot b| = |a||b|$ $|a/b| = |a|/|b|$ $|a+b| \le |a|+|b|$ (Triangle inequality)

<u>Exercises VII C</u> Find all x satisfying the given condition.

1. |x-2| = 53. |x-2| > 15. $\left| \frac{1}{2x+3} \right| \le 2$ 2. $|x-2| \le 5$ 4. $|2x-3| \le 5$

Answers to Exercises VII

.

B:	1. $x > -3/4$	2. x > 5
	3. $-3 < x < 4$	4. $-3 < x < -1$
	5. all numbers except x=1,2	6. x > 1
	7. $x \leq -2$ or $x \geq 4$	8. $x < -5$ or $x > -1$
	9. $x < 0$ or $0 < x < 1$ or $x > 7$	

C: 1. x = -7 or 3 3. x > 3 or x < 15. x < -7/4 or x > -5/42. -3 < x < 74. -1 < x < 4

VH.5