VII. Inequalities and absolute value

A. Properties of inequalities (stated for <, but corresponding rules hold for $>$. \leq. and \geq)

1. If $a<b$ and c is any number, then $a+c<b+c$.
2. If $a<b$ and c is positive, then $a c<b c$.
3. However, if $a<b$ and c is negative, then $a c>b c$, i.e. the inequality is reversed.
4. If $a<b$ and a and b are both positive or both negative, then $1 / a>1 / b$; the inequality reverses. (If they are of opposite signs, the inequality stays the same; positive $>$ negative.)

For illustration, $3<5$ so $3(4)<5(4)$, but $3(-4)>5(-4)$ and $1 / 3>1 / 5$.

$$
12\langle 20 \quad-12>-20
$$

B. Solving inequalities Working with inequalities is much like working with equations -- but note the differences expressed by properties. 3 and 4 above.

Examples

1. Find all real numbers x satisfying $8 x+2<3 x-18$.

$$
\begin{aligned}
8 x+2 & <3 x-18 \\
8 x-3 x & <-18-2 \\
5 x & <-20 \\
x & <-4
\end{aligned}
$$

2. Find all x satisfying $3 x+2<5 x-7$.

$$
\left.\begin{array}{l}
3 x+2<5 x-7 \\
3 x-5 x<-7-2 \\
-2 x<-9 \\
x>9 / 2
\end{array}\right\} \begin{aligned}
& \text { Reverse the } \\
& \text { ineguality }
\end{aligned}
$$

Geometrically:

3. Find all x satisfying $x(x-1) \leq 6$.

$$
\begin{array}{ll}
x(x-1) \leq 6 & \text { Proceed as for quadratic equations: } \\
x^{2}-x \leq 6 & \text { put all terms on one side with } 0 \text { on other. } \\
x^{2}-x-6 \leq 0 & \text { Then factor. }
\end{array}
$$

Note that the expression on the left-hand side can change sign only where it passes through zero, namely at $x=3$ and at $x=-2$. These two
points divide the x -axis into three regions:

In 1 , where $x<-2$, both $(x-3)$ and $(x+2)$ are negative. Therefore the product $(x-3)(x+2)$ is positive.
In II, where $-2<x<3,(x+2)$ is positive and $(x-3)$ is negative, so their product is negative.
In III, where $x>3$, both $(x+2)$ and $(x-3)$ are positive, so their product is positive.

Summarizing:

Thus the solution is $-2 \leq x \leq 3$.
4. Find all $x: \frac{3 x}{x-1}<\frac{x}{x+2}+2$.

If we tried to clear fractions by multiplying by $(x-1)(x+2)$ we'd have to divide into cases according to whether $(x-1)(x+2)$ is positive or negative. It's easier to put all terms on one side and add fractions.

$$
\begin{aligned}
& \frac{3 x}{x-1}-\frac{x}{x+2}-2<0 \\
& \frac{3 x(x+2)-\frac{x(x-1)-2(x-1)(x+2)}{(x-1)(x+2)}<0}{}
\end{aligned}
$$

$$
\frac{5 x+4}{(x-1)(x+2)}<0
$$

Sign changes can occur when $5 x+4=0$..... $x=-4 / 5$

$$
x-1=0 \quad \ldots . . \quad x=1
$$

$$
x+2=0 \quad \ldots . . \quad x=-2 .
$$

Four regions
to consider:

Solution from chart on next page: the inequality holds when $x<-2$ or $-4 / 5<x<1$.

$x<-2$	$x+2$	$5 x+4$	$x-1$	$(5 x+4) /(x-1)(x+2)$
	-	-	-	-
	+	-	-	+
$x>1$	+	+	-	+

Exercises VII B Find all x satisfying the given inequalities.

1. $4 x+3>0$
2. $3 x+2<4 x-3$
3. $x^{2}-x-12<0$
4. $x(x+4)<-3$
5. $(x-1)^{2}(x-2)^{4}>0$
6. $(x-1)^{3}>0$
7. $\frac{(x-4)^{3}(x+2)}{(x-1)^{2}} \geq 0$
8. $\frac{x-3}{x+1}<2$
9. $(1 / 3) x^{-2 / 5}(x-7)^{-2}+2 x^{1 / 3}(x-7)>0$
C. Absolute value

Geometrically, the absolute value of a real number a, denoted $|a|$, is the distance on a number line between 0 and a.

Algebraically, $|a|=\left\{\begin{array}{ccc}a & \text { if } & a \geq 0 \\ -a & \text { if } & a \leq 0,\end{array}\right.$
egg. $|2|=2 ;|-3|=-(-3)=3 ;|0|=0$.
Note that $|\mathrm{a}-\mathrm{b}|$ is the distance
between a and b.

Examples 1. Find all x such that $|x-3|=2$.
Algebraic solution:

$$
\begin{array}{rlrl}
x-3 & =2 & \text { or } & x-3=-2 \\
x=5 & \text { or } & x=1
\end{array}
$$

Geometric solution:
distance between x and 3
equals $2 ; x=1$ or 5 .

2. Find all x such that $|x-5|<3$.

$$
\text { Algebraic: } \begin{aligned}
-3 & <x-5<3 \\
-3+5 & <x<3+5 \\
2 & <x<8
\end{aligned}
$$

Geometric: distance between x and 5 is less than 3 .

3. Find all x such that $|3 x-10|>2$.

$$
\begin{array}{rlrc}
\text { Either } & 3 x-10>2 & \text { or } & 3 x-10<-2 \\
3 x>12 & \text { or } & 3 x<8 \\
x>4 & \text { or } & x<8 / 3
\end{array}
$$

(Geometrically, distance between $3 x$ and 10 is greater than 2 .)
4. Find all x such that $\left|\frac{2}{1-x}\right|<1$.

$$
-1<\frac{2}{1-x}<1
$$

Taking reciprocals reverses the inequalities:
either $\frac{1}{-1}>\frac{1-x}{2}$ or $\quad \frac{1-x}{2}>\frac{1}{1} \quad$ subtract $1 / 2$
$\frac{-3}{2}>\frac{-x}{2} \quad$ or $\quad \frac{-x}{2}>\frac{1}{2} \quad$ mult. by -2
$3<x$ or $x<1$ (reverse ineq.)

Useful properties: $\quad|a|=|-a|$
$|a \cdot b|=|a||b|$
$|a / b|=|a| /|b|$
$|a+b| \leq|a|+|b| \quad$ (Triangle inequality)

Exercises VII C Find all x satisfying the given condition.

1. $|x-2|=5$
-2. $|x-2|<5$
2. $|x-2|>1$
3. $|2 x-3|<5$
4. $\left|\frac{1}{2 x+3}\right|<2$

Answers to Exercises VII

B: 1. $x>-3 / 4$
2. $x>5$
3. $-3<x<4$
4. $-3<x<-1$
5. all numbers except $x=1,2$
6. $x>1$
7. $x \leq-2$ or $x \geq 4$
8. $x<-5$ or $x>-1$
9. $x<0$ or $0<x<1$ or $x>7$
C: 1. $x=-7$ or 3
2. $-3<x<7$
3. $x>3$ or $x<1$
4. $-1<x<4$
5. $x<-7 / 4$ or $x>-5 / 4$

