II. Factoring and solving equations

A. Eactorins polynomials

Examples 1. Factor $3 x^{2}+6 x$ if possible.
Look for monomial (single-term) factors first; 3 is a factor of both $3 x^{2}$ and $6 x$ and so is x. Factor them out to get

$$
3 x^{2}+6 x=3\left(x^{2}+2 x\right)=3 x(x+2)
$$

2. Factor $x^{2}+x-6$ if possible.

Here we have no common monomial factors. To get the x^{2} term we'll have the form $\left.\left(x+{ }_{+}\right)(x+)_{-}\right)$. Since

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B,
$$

we need two numbers A and B whose sum is 1 and whose product is -6 . Integer possibilities that will give a product of -6 are

$$
-6 \text { and } 1,6 \text { and }-1,-3 \text { and } 2,3 \text { and }-2 .
$$

The only pair whose sum is 1 is $\{3$ and -2$\}$, so the factorization is

$$
x^{2}+x-6=(x+3)(x-2)
$$

3. Factor $4 x^{2}-3 x-10$ if possible.

Because of the $4 x^{2}$ term the factored form will be either $(4 x+A)(x+B)$ or $(2 x+A)(2 x+B)$. Because of the -10 the integer possibilities for the pair A, B are

$$
10 \text { and }-1,-10 \text { and } 1,5 \text { and }-2,-5 \text { and } 2, \text { plus each of }
$$ these in reversed order.

Check the various possibilities by trial and error. It may help to write out the expansions

$$
\begin{aligned}
&(4 x+A)(x+B)= 4 x^{2}+(4 B+A) x+A B \\
& \quad \text { Itrying to get }-3 \text { here } \\
&(2 x+A)(2 x+B)=4 x^{2}+(2 B+2 A) x+A B
\end{aligned}
$$

Trial and error gives the factorization $4 x^{2}-3 x-10=(4 x+5)(x-2)$.
4. Difference of two squares. Since $(A+B)(A-B)=A^{2}-B^{2}$, any expression of the form $A^{2}-B^{2}$ can be factored. Note that A and B might be anything at all.
Examples: $\quad 9 x^{2}-16=(3 x)^{2}-4^{2}=(3 x+4)(3 x-4)$

$$
x^{2}-2 y^{2}=x^{2}-(\sqrt{2} y)^{2}=(x+\sqrt{2 y})(x-\sqrt{2} y)
$$

For any of the above examples one could also use the

QUADRATIC FORMULA

In the factorization $a x^{2}+b x+c=a(x-A)(x-B)$, the numbers A and B are given by

$$
A, B=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

If the "discriminant" $b^{2}-4 a c$ is negative, the polynomial cannot be factored over the real numbers (e.g. consider $x^{2}+1$).

In Example 2 above, $a=1, b=1, c=-6$, so

$$
A, B=\frac{-1 \pm \sqrt{1+24}}{2}=\frac{-1 \pm 5}{2}=2,-3, \text { so } x^{2}+x-6=(x-2)(x+3)
$$

5. Factor $x^{3}+3 x^{2}-4$ if possible.

Useful_fact about factoring polynomials

If plugging $x=a$ into a polynomial yields zero, then the polynomial has $(x-a)$ as a factor.
We'll use this fact to try to find factors of $x^{3}+3 x^{2}-4$. We look for factors ($x-a$) by plugging in various possible a's, choosing those that are factors of -4 . Try plugging $x=1,-1,2,-2,4,-4$ into $x^{3}+3 x^{2}-4$. Find that $x=1$ gives $1^{3}+3 \cdot 1^{2}-4=0$. So $x-1$ is a factor of $x^{3}+3 x^{2}-4$. To factor it out, perform long division:

$$
\begin{gathered}
\begin{array}{l}
\frac{x^{2}+4 x+4}{x-1} \begin{array}{l}
x^{3}+3 x^{2}+0 x-4 \\
\frac{x^{3}-x^{2}}{4 x^{2}+0 x-4} \\
\frac{4 x^{2}-4 x}{4 x-4} \\
4 x-4 \\
0
\end{array}
\end{array} \quad \begin{array}{l}
\text { Thus } \\
x^{3}+3 x^{2}-4=(x-1)\left(x^{2}+4 x+4\right) \\
\text { But } x^{2}+4 x+4 \text { can be } \\
\text { factored further as in the } \\
\text { examples above; }
\end{array} \\
\end{gathered}
$$

we finally get $x^{3}+3 x^{2}-4=(x-1)(x+2)(x+2)=(x-1)(x+2)^{2}$.
Exercises_LIA Factor the following polynomials.

1. $x^{2}+8 x+15$
2. $4 x^{2}-25$
3. $4 y^{2}-13 y-12$
4. $x^{3}+2 x^{2}-x-2$
5. $4 z^{2}+4 z-8$
6. $a^{2}+3 a+2$
7. Simplify by factoring
numerator and denominator:

$$
\frac{3 x^{2}+3 x-18}{4 x^{2}-3 x-10}
$$

B. Solving equations

1. Linear or first-degree equations: involving x but not x^{2} or any other power of x. Collect x-terms on one side, constant terms on the other.

$$
\text { Example } \begin{aligned}
x+3 & =7 x-4 \\
x+(-7 x) & =-4+(-3) \\
-6 x & =-7 \\
x & =7 / 6
\end{aligned}
$$

2. Quadratic equations: involving x^{2} but no higher power of x.

These are solved by factoring and/or use of the quadratic formula:
The equation $a x^{2}+b x+c=0 \quad(a=0)$
has solutions $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
If $b^{2}-4 a c$ is negative, the equation has no real solutions.
Example Solve $x^{2}-2 x-3=0$ for x.
Methed 1: Factoring. $x^{2}-2 x-3=(x-3)(x+1)=0$.
Since a product of two numbers is zero if and only if one of the two numbers is zero, we must have

$$
\begin{gathered}
x-3=0 \text { or } x+1=0 \text {. So the solutions are } x=3 .-1 . \\
\text { Methed 2: Quadratic formula. } a=1, b=-2, c=-3 . \\
x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-3)}}{2(1)}=\frac{2 \pm \sqrt{16}}{2}=\frac{2 \pm 4}{2}=3 \text { or }-1 .
\end{gathered}
$$

3. Other types of equations.

Examples (a) Solve $\frac{14}{x+2}-\frac{1}{x-4}=1 . \quad(x=-2, x=4)$
Multiply both sides by common denominator $(x+2)(x-4)$ to get $14(x-4)-1(x+2)=(x+2)(x-4)$.

Expand and simplify. Get a quadratic equation so put all terms on one side. $\quad 14 x-56-x-2=x^{2}-2 x-8$

$$
x^{2}-15 x+50=0
$$

Now factor (or use quadratic formula).

$$
(x-10)(x-5)=0, x-10=0 \text { or } x-5=0, x=10 \text { or } 5 .
$$

(b) Solve $x^{3}-2 x^{2}-5 x+6=0$.

The idea is much the same as in Example 5 of part A where we used the fact about factoring polynomials. Try $x=1,-1,2,-2,3,-3,6,-6$. As soon as one of these possibilities satisfies the equation we have a factor. It happens that $x=1$ is a solution. By long division we get:

$$
\begin{aligned}
& \quad x^{3}-2 x^{2}-5 x+6=(x-1)\left(x^{2}-x-6\right)=(x-1)(x-3)(x+2)=0, \\
& \text { so } x=1,3 \text { or }-2
\end{aligned}
$$

(c) Solve $\sqrt{x+2}=x$.

Start by squaring both sides, but this may lead to extraneous reots so we'll have to check answers at the end.

$$
\begin{aligned}
& x+2=x^{2} \\
& x^{2}-x-2=(x-2)(x+1)=0, \text { so } x=2 \text { or }-1
\end{aligned}
$$

Check in original equation: $\sqrt{2+2}=2$, OK; $\sqrt{-1+2}=1$, not -1 , so reject $x=-1$; only solution is $x=2$.

Exercises II B Solve the following equations.

1. $\frac{2 y+3}{7}=\frac{3 y+1}{3}$
2. $s=\frac{1}{2} g t^{2} \quad \begin{aligned} & \text { (solve for } g \text { in terms } \\ & \text { of } s \text { and } t .)\end{aligned}$
3. $s=1 / 2 g t^{2}$ (solve for t in terms of s, g)
4. $x^{2}-(x-2) 2 x=4$
5. $x^{3}-4 x+3=0$
6. $x=\frac{4}{4-x}$
7. $\sqrt{8-x^{2}}=\frac{x^{2}}{\sqrt{8-x^{2}}}$

C. Solving simultaneous equations

1. Linear systerns of equations.

Example Find all values of x and y that satisfy the two equations

$$
9 x+2 y=37
$$

$$
5 x+6 y=45
$$

Method 1: Substitution.
Solve one equation for one variable in terms of the other, then substitute into the other equation. For instance, solving first equation for y :

$$
\begin{aligned}
2 y & =37-9 x \\
y & =(37-9 x) / 2
\end{aligned}
$$

Second eq'n: $\quad 5 x+6 \cdot(37-9 x) / 2=45$

$$
5 x+111-27 x=45
$$

$$
-22 x=-66
$$

$x=-66 /-22=3$; plug this into expres-
sion for $y: y=(37-9(3)) / 2=5$. Solution: $x=3, y=5$.
Method 2: Elimination.
Multiply the equations by appropriate constants so that when the equations are added one variable will be eliminated. For instance, to eliminate y, multiply both sides of first equation by -3 :

$$
\begin{array}{rlrl}
-3 \cdot \text { first eq } n: & -27 x-6 y & =-111 \\
\text { second eq: } n: & \frac{5 x+6 y}{}=45 \\
\text { Add: } & \frac{-22 x}{} & =-66
\end{array} \text { so } x=3 .
$$

Now sub. $x=3$ into one of the original equations, e.g. the second:

$$
5(3)+6 y=45 \quad \text { so } y=5
$$

Note What we ve done geometrically in this example is to find $(3,5)$ as the point of intersection of the lines $9 x+2 y=37$ and $5 x+6 y=45$.

2. Systems of nonlinear equations.

Example Find the point(s) of intersection of the curves

$$
\left.\begin{array}{rl}
y=3-x^{2} \text { and } y=3-2 x . \\
y=3-x^{2} \\
y=3-2 x
\end{array}\right\} \text { Set equal to get } \begin{aligned}
3-x^{2} & =3-2 x \\
x^{2}-2 x & =0 \\
x(x-2) & =0 \\
x & =0 \text { or } 2 .
\end{aligned}
$$

Now sub. $x=0, x=2$ into one of the given equations $(y=3-2 x$ is easier) to get y 's:
$x=0 \quad x=2$
$y=3-2(0)=3 \quad y=3-2(2)=-1$
The points of intersection are $(0,3)$ and $(2,-1)$.

Exercises II C Solve the following systems of equations.

1. $-x+y=-1$
$x+y=3$
2. $3 x+y=10$
$4 x+5 y=-16$
3. $y=3-x^{2}$
$y=-2 x$
4. $3 x+5 y=11$
$8 x-12 y=-15$
5. $x=5-y^{2}$
$x=y^{2}-3$

Answers to Exercises II
A: 1. $(x+5)(x+3)$
2. $(2 x-5)(2 x+5)$
3. $(4 y+3)(y-4)$
4. $(x+1)(x-1)(x+2)$
5. $4(z+2)(z-1)$
6. $(a+2)(a+1)$
7. $\frac{3(x+3)(x-2)}{(4 x+5)(x-2)}=\frac{3(x+3)}{4 x+5}$
$(x=2, x=-5 / 4)$
B:

1. $\mathrm{x}=\frac{2}{15}$
2. $g=\frac{2 \mathrm{~s}}{\mathrm{t}^{2}}$
3. $-x^{2}+4 x-4=-(x-2)^{2}=0$ $x=2$
4. $t= \pm \sqrt{\frac{2 s}{g}}$
5. $(x-1)\left(x^{2}+x-3\right)=0$

$$
x=1,(-1 \pm \sqrt{13}) / 2
$$

6. $x(4-x)=4$
7. $\left(8-y^{2}\right)-y^{2}=0$
$-x^{2}+4 x-4=0$ $x=2$ (see no. 4)

$$
\begin{aligned}
2 y^{2}-8 & =2(y-2)(y+2)=0 \\
y & =2,-2
\end{aligned}
$$

C: 1. $x=2, y=1$
2. $x=6, y=-8$
3. $x=3, y=-6$ or $x=-1, y=2$
4. $x=57 / 76, y=133 / 76$
5. $x=1, y=2$ or $x=1, y=-2$

