VIII. Exponential and logarithmic functions

A. Exponential functions

Definition. The function $f(x)=b^{x}$, where b is a positive constant, is called the exponential function with base b. It is defined for all real numbers x , but see note below.

To graph, we plot a few points and join them with a smooth curve.
Example $f(x)=2^{x}$

8	0	1	2	3	-1	-2	-3	$1 / 2$	$3 / 2$
$2 \times$	1	2	4	8	$1 / 2$	$1 / 4$	$1 / 8$	$\sqrt{2} \approx 1.4$	$(\sqrt{2})^{3} \approx 2.7$

(The other graphs shown below were obtained similarly.)

Note: There is no easy way to compute (or even to define) such numbers as 2^{π}. We can approximate them, however. The number π can be thought of as the limit of the sequence $3,3.1,3.14,3.141,3.1415,3.14159, \ldots$
Then we get 2^{π} as the limit of the sequence

$$
2^{3}, 2^{\frac{31}{10}}, 2^{\frac{314}{100}}, 2^{\frac{3141}{1000}}, \ldots \text {, which is approximately } 8.825
$$

Properties

1. $b^{x}>0$ for every x.
2. $b^{0}=1$ for every b (so the graph of $f(x)=. b^{x}$, always passes through $(0,1)$).
3. If $b>1$, then b^{x} increases without bound as x tends toward infinity and tends toward zero as x tends toward negative infinity. If $0<b<1$, then b^{x} approaches zero as x tends toward infinity and increases without bound as x approaches negative infinity. Thus the graph of b^{x} (for $b \neq 1$) has the x-axis as a horizontal asymptote.

B. Logarithms

Notice from the graphs above that if $b>0$ but $b \not \approx 1$ then for each positive number y there is exactly one number x for which $b^{x}=y$. This number is called the logarithm of y base b or the base-b logerithm of y and is written $\log _{b} y$. Thus, by definition, $\log _{b} y$ is the exponent to which we must raise b in order to get y. Saying $x=\log _{b} y$ is equivalent to saying $b^{x}=y$. Note that only positive numbers have logarithms!

Examples $\log _{2} 8=3$ since $2^{3}=8 \quad \log _{2} 1=0$ since $2^{0}=1$

$$
\begin{array}{ll}
\log _{3} 81=4 \text { since } 3^{4}=81 & \log _{2} 2=1 \text { since } 2^{1}=2 \\
\log _{2} \frac{1}{4}=-2 \text { since } 2^{-2}=\frac{1}{4} & \log _{16} 8=\frac{3}{4} \text { since } 16^{3 / 4}=8
\end{array}
$$

To repeat: $\quad \log _{b} y=x$ is equivalent to $b^{x}=y$.

Example Find x if $\log _{5} x=4$.

$$
x=5^{4}=625 \text { by definition of logs. }
$$

To graph a logarithmic function, note that if (c, d) is a point on the graph of b^{x}, so that $d=b^{c}$, then (d, c) will be a point on the graph of $\log _{b} x$, because $c=\log _{b} d$. So the log. graph is the "inverse" of the exponential graph.

Example

$$
f(x)=\log _{2} x
$$

Properties For every $b>0(b=1)$:

1. $\log _{b} 1=0$
2. $\log _{b} b=1$
3. $\log _{b}\left(b^{x}\right)=x$, where x is any number or expression.
4. $b^{\left(\log _{b} x\right)}=x$, where x is any positive number or expression.

You may be most familiar with base-10 logarithms,
e.g. $\log _{10}(0.1)=-1$ since $10^{-1}=0.1$; $\log _{10} 1000=3$ since $10^{3}=1000$.

Exercises VMI $A B$

Sketch the graphs of the following functions.

1. $f(x)=3^{x}$
2. $g(x)=(1 / 3)^{x}$
3. $h(x)=\log _{3} x$
4. Find: (a) $\log _{3} 27$
(b) $\log _{2} \sqrt{2}$
(c) $\log _{10} 100$
(d) $\log _{3}(1 / 27)$
5. Solve for
x : (a) $\log _{2} x=3$
(b) $\log _{5}(1 / x)=1$
(c) $2^{x}=3$
6. Simplify:
(a) $\log _{10}\left(10^{x}\right)$
(b) $5^{\log _{5} x^{2}}$

C. Rules of computation for logarithms

Since logarithms are related to exponential functions, each of the rules for exponents gives rise to a corresponding rule for logarithms. Besides the facts that have already been listed, there are the following properties of logs:

$$
\begin{aligned}
& \log _{b}(x y)=\log _{b} x+\log _{b} y \quad\left(\text { this comes from } \quad b^{x} b^{y}=b^{x+y}\right) \\
& \log _{b} \frac{x}{y}=\log _{b} x-\log _{b} y \\
& \text { In particular, } \log _{b} \frac{1}{y}=-\log _{b} y \quad \text { (since } \log _{b} 1=0 \text {) } \\
& \log _{b} x^{y}=y \log _{b} x \quad \text { (this comes from } \quad\left(b^{x}\right)^{y}=b^{x y} \text {) }
\end{aligned}
$$

Examples 1. If $a=\log _{10} 2$ and $b=\log _{10} 3$, write $\log _{10} 6$ in terms of a and b.

$$
\log _{10} 6=\log _{10}(2 \cdot 3)=\log _{10} 2+\log _{10} 3=a+b .
$$

2. With a and b as in (1), write $\log _{10}(0.6)$ in terms of a and b.

$$
\log _{10} 0.6=\log _{10}(6 / 10)=\log _{10} 6-\log _{10} 10=a+b-1 .
$$

3. Write $\log _{3}(x-1)+2 \log _{3}(x-2)-3 \log _{3}(x-4)$ as a single logarithm.

$$
\begin{aligned}
\log _{3} & (x-1)+2 \log _{3}(x-2)-3 \log _{3}(x-4) \\
& =\log _{3}(x-1)+\log _{3}(x-2)^{2}-\log _{3}(x-4)^{3} \\
& =\log _{3}\left[(x-1)(x-2)^{2}\right]-\log _{3}(x-4)^{3}=\log _{3} \frac{(x-1)(x-2)^{2}}{(x-4)^{3}} .
\end{aligned}
$$

4. Find x if $10^{\left(\log _{10} x^{2}+3 \log _{10} x\right)}=2$.

$$
\begin{aligned}
& \log _{10} x^{2}+3 \log _{10} x=\log _{10} x^{2}+\log _{10} x^{3} \\
& \quad=\log _{10}\left(x^{2} \cdot x^{3}\right)=\log _{10} x^{5}, \\
& \text { so } 10^{\left(\log _{10} x^{2}+3 \log _{10} x\right)}=10^{\log _{10} x^{5}}=x^{5}=2, \\
& \text { and } x=2^{1 / 5}=\sqrt[5]{2} .
\end{aligned}
$$

Exercises VILLC

1. Write as a single logarithm.
(a) $\log _{b}(x+1)+\log _{b}(x-2)+2 \log _{b}(x-3)$
(b) $1 / 2 \log _{b}(x+1)-1 / 2 \log _{b}(x-1)$
2. Let $a=\log _{10} 2, b=\log _{10} 3, c=\log _{10} 5$. Write the following in terms of a, b, and c :
(a) $\log _{10} 360$
(b) $\log _{10} \frac{54}{25}$
3. Write using sums and differences of logs and only first powers of x.
(a) $\log _{b} \frac{x+1}{x+2}$
(b) $\log _{b} \frac{(x-1)^{2}(2 x+1)^{3}}{\sqrt[3]{(4 x-1)^{2}}}$
4. Solve for
x :
(a) $\log _{2} \sqrt{3 x+1}=1$
(b) $3^{-2 \log _{3} x}=1 / 3$

D. The natural logarithm

There is a special number, e, equal to approximately 2.71828 , which occurs frequently in mathematics and the sciences. The logarithm using e as base turns out to be most important. This logarithm is called the natural logarithm and one often writes \ln instead of $\log _{e}$. Thus $y=\ln x$ means $y=\log _{e} x$ which means $e y=x$. Sometimes instead of e^{x} one writes $\exp (x)$. This is called the natural exponential function. All the usual properties of exponents and logarithms hold for the functions $\exp (x)$ and $\ln x$.

Answers to Exercises VIII

4.(a) 3
(b) $1 / 2$
5.(a) $x=2^{3}=8$
6.(a) $x \quad$ (b) x^{2}
(c) 2
(d) -3
(b) $x=5$
(c) $x=\log _{2} 3$

C: 1.(a) $\log _{b}(x+1)(x-2)(x-3)^{2} \quad$ (b) $\log _{b} \sqrt{\frac{x+1}{x-1}}$

$$
\text { 2.(a) } \begin{aligned}
& \log _{10} 360=\log _{10}\left(2^{2} \cdot 3^{2} \cdot 10\right)=2 \log _{10} 2+2 \log _{10} 3+\log _{10} 1 \\
&=2 a+2 b+1 \\
& \text { (b) } \begin{aligned}
\log _{10}(54 / 25)=\log _{10} 54-\log _{10} 25 & =\log _{10}\left(2 \cdot 3^{3}\right)-\log _{10} 5^{2} \\
& =a+3 b-2 c
\end{aligned}
\end{aligned}
$$

3.(a) $\log _{b}(x+1)-\log _{b}(x+2)$
(b) $2 \log _{b}(x-1)+3 \log _{b}(2 x+1)-(2 / 3) \log _{b}(4 x-1)$
4.(a) $1 / 2 \log _{2}(3 x+1)=1, \quad 2^{\log _{2}(3 x+1)}=3 x+1=2^{2}$, so $x=1$.
(b) $3^{\log _{3} \frac{1}{x^{2}}}=\frac{1}{x^{2}}=\frac{1}{3}$, so $x= \pm \sqrt{3}$

