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1 Introduction

Terminology:

o Let A € Q*Y. We refer to A as being CC(m) if A satisfies the columns condition with a partition
consistent of m classes.

e By Rado’s theorem we have that A is CC(m) for some m € N if and only if A is partition regular.
We will use the abbreviation PR for partition regular and use it interchangeably with the statement
“A is CC(m) for some m € N.”

e Let A€ Q“*". An index k is a null indez if for every vector x = [x;] € ker A, xj, = 0.
Observation 1.1.

1. A€ CC(1) if and only if Al =0, where 1 =[1,...,1].

2. If A is CC(m), then rank(A) < v — m, since in this case A has at least m dependent columns.

3. If € ker(A) such that no coordinate of T is allowed to be 0, and D = diag(z1,..., =), then the
matrices DY AD and AD are CC(1) and therefore PR.

Theorem 1.2. If A is a u X v matriz such that A has a null index, then A is not PR.
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2 Incidence matrices of oriented graphs

Adjacency matrices are not PR since they are nonnegative and nonzero matrices. Oriented vertex-edge
incidence matrices can be PR and we look here at questions that arise naturally in this context.
Notation:

Let G = (V,E) be an oriented graph. Then D5 denotes its vertex-edge incidence matrix.

Observation 2.1. While an arbitrary matriz A is CC(1) if and only if Te ker(A), for any oriented
graph G, the vector 1 = [1,..., 1]T is in the left null space of Dg.

Observation 2.2. Let G be an oriented graph and ﬁG its vertex-edge incidence matrix. Ifé has either
a source or a sink then Dg is not PR.

Observation 2.3. For any é, the matriz Dz has net column weight of 0. Note that the row weight is
variable.

Theorem 2.4. Let G be a connected graph. The following are equivalent:
1. K.(G) > 2, i.e., G has no bridge,
2. G is the union of its cycles,
8. G can be oriented so that the corresponding vertex-edge incidence matriz is PR.

Proof. The following recursive algorithm produces the desired partition: Pick an unoriented cycle and
orient it cyclically. Let the corresponding columns of the vertex-edge incidence matrix be the first cell of
our partition I7. Repeat this process until all edges are in some class . O

Theorem 2.5. For an oriented graph C_j, the matriz D¢ is PR if and only zfé is strongly connected.

Corollary 2.6. For any D, where G is strongly connected,
rank Dz < |G| — 1.

Observation 2.7. If C.,, is an oriented cycle on n vertices then D is CC(1) and rank Dgs =n—1.

Theorem 2.8. Let G be any graph which contains a Hamiltonian cycle. Then G can be oriented in such
a way that Dy is CC(2) and therefore PR.

Theorem 2.9. If 51G and 526: are two distinct orientated vertex-edge incidence matrices associated
with a graph G, then there exists a signature matriz S such that D'g = D% - S.

Observation 2.10. Let Ds be an incidence matriz for the strongly connected oriented graph G. If
I={L, ..., It} is a partition of the the columns of Ds which satisfies the columns condition, then I
s an edge-disjoint union of cycles.

Theorem 2.11. Let Dg be an incidence matriz for the strongly connected oriented graph G. Any set
{I, ..., It} such that I; € Eg, I; NI =0 if j # 1, and for all 1 < j < .2 er, @i € {ait i€ ul_ 1),
can be extended to a partition of E5 that satisfies the columns condition.

Corollary 2.12. Let D be an incidence matrix for the strongly connected oriented graph G. The greedy
algorithm produces a partition of the columns of Dz which satisfies the columns condition.



3 Sign Patterns

A sign pattern matriz (or sign pattern for short) is a (rectangular) matrix having entries in {+, —,0}. For
a real matrix A, sgn(A) is the sign pattern having entries that are the signs of the corresponding entries
in A. If Y is an n X n sign pattern, the sign pattern class (or qualitative class) of Y, denoted Q(Y), is the
set of all A € R™*"™ such that sgn(A) =Y. It is traditional in the study of sign patterns to say that a sign
pattern Y requires property P if every matrix in Q(Y) has property P and to say that Y allows property
P if there exists a matrix in Q(Y) that has property P. Patterns that require partition regularity are too
trivial to be of interest:

Theorem 3.1. The only sign patterns that requires partition reqularity are the all zero sign patterns.
Proof. Assume Y = [¢);;] has a nonzero entry. Construct a matrix A = [a;;] as follows:

e For all 7, j such that 1;; =0, a;; = 0.

e For all 7, j such that v¢;; = +, a;; = 1.

e For all 7, j such that ¢;; = —, a;; = ——
There is no subset of columns that sum to zero, so A does not have the columns condition and so is not

partition regular. O

Since a partition regular matrix must satisfy the columns condition, it is clear that in order for a sign
pattern to allow partition regularity, any nonzero row must have both at least one + entry and at least
one — entry. This is also sufficient for a sign pattern to allow partition regularity:

Theorem 3.2. Let Y be an m X n sign pattern. The following are equivalent:
1. Fach row of Y has at least one + entry and at least one — entry or every entry is 0.
2. Y allows CC(1).
3. Y allows partition reqularity.

Proof. Tt is clear that (2) = (3) = (1). Assume each row of Y = [¢/;;] has at least one + entry and
at least one — entry or every entry is 0. If row ¢ is non entirely 0, let m(i) denote the column number of
the first — entry in row 4; otherwise, m(#) = 0. Construct a matrix A = [a;;] as follows:

e For all 7, j such that ¢;; =0, a;; = 0.
e For all ¢ such that m(i) > 0:
o If 5 =+, a5 =1.
o For j > m(i), if ¢;; = — then a;; = —+.
© Qigm(i) = = Djpm(i) V-
Clearly A € Q(Y) and A1 = 0, so A has CC(1). O

The minimum rank of an m X n sign pattern Y is
mr(Y) = min{rank(A4) : A € Q(Y)},
and the mazimum nullity of Y is

M(Y) = max{null(4) : A€ Q(Y)}.



Clearly mr()) + M(Y) = n.

It is not always the case that the nullity of a partition regulaar matrix can be realized by the number
of cells in a columns condition partition. For example, for A = [3 -1 -1 —1], null(A) = 3 but A is
CC(m) only for m = 1. But the following question remains open:

Question 3.3. If Y allows partition regularity, must there exist a matriz A € Q(Y) such that A is
CC(M(Y))?

Theorem 3.4. Let G be a connected graph, let G be an orientation of G, and let Y = sgn(Dg). Then
the following are equivalent:

1. Y allows PR
2. Dg s PR

3. G is strongly connected.

Proof. [will write this later] O



