Rank and nullity of Partition Regular Matrices

Leslie Hogben^{*} Jillian McLeod[†]

September 6, 2009

1 Introduction

Terminology:

- Let $A \in \mathbb{Q}^{u \times v}$. We refer to A as being CC(m) if A satisfies the columns condition with a partition consistent of m classes.
- By Rado's theorem we have that A is CC(m) for some $m \in \mathbb{N}$ if and only if A is partition regular. We will use the abbreviation PR for partition regular and use it interchangeably with the statement "A is CC(m) for some $m \in \mathbb{N}$."
- Let $A \in \mathbb{Q}^{u \times v}$. An index k is a null index if for every vector $\mathbf{x} = [x_i] \in \ker A, x_k = 0$.

Observation 1.1.

- 1. $A \in CC(1)$ if and only if A1 = 0, where $1 = [1, ..., 1]^T$.
- 2. If A is CC(m), then $rank(A) \leq v m$, since in this case A has at least m dependent columns.
- 3. If $\vec{x} \in \text{ker}(A)$ such that no coordinate of \vec{x} is allowed to be 0, and $D = \text{diag}(x_1, \ldots, x_v)$, then the matrices $D^{-1}AD$ and AD are CC(1) and therefore PR.

Theorem 1.2. If A is a $u \times v$ matrix such that A has a null index, then A is not PR.

^{*}Department of Mathematics, Iowa State University, Ames, IA 50011, USA (lhogben@iastate.edu) and American Institute of Mathematics, 360 Portage Ave, Palo Alto, CA 94306 (hogben@iamath.org).

[†]Department of Mathematics, Mt. Holyoke College

2 Incidence matrices of oriented graphs

Adjacency matrices are not PR since they are nonnegative and nonzero matrices. Oriented vertex-edge incidence matrices can be PR and we look here at questions that arise naturally in this context. **Notation:**

Let G = (V, E) be an oriented graph. Then $D_{\vec{G}}$ denotes its vertex-edge incidence matrix.

Observation 2.1. While an arbitrary matrix A is CC(1) if and only if $\vec{1} \in \text{ker}(A)$, for any oriented graph \vec{G} , the vector $\mathbf{1} = [1, \ldots, 1]^T$ is in the left null space of $D_{\vec{C}}$.

Observation 2.2. Let \vec{G} be an oriented graph and \vec{D}_G its vertex-edge incidence matrix. If \vec{G} has either a source or a sink then \vec{D}_G is not PR.

Observation 2.3. For any \tilde{G} , the matrix $D_{\tilde{G}}$ has net column weight of 0. Note that the row weight is variable.

Theorem 2.4. Let G be a connected graph. The following are equivalent:

- 1. $K_e(G) \ge 2$, i.e., G has no bridge,
- 2. G is the union of its cycles,
- 3. G can be oriented so that the corresponding vertex-edge incidence matrix is PR.

Proof. The following recursive algorithm produces the desired partition: Pick an unoriented cycle and orient it cyclically. Let the corresponding columns of the vertex-edge incidence matrix be the first cell of our partition I_1 . Repeat this process until all edges are in some class I_k .

Theorem 2.5. For an oriented graph \vec{G} , the matrix \vec{D}_G is PR if and only if \vec{G} is strongly connected.

Corollary 2.6. For any $D_{\vec{G}}$, where \vec{G} is strongly connected,

$$\operatorname{rank} D_{\vec{G}} \le |G| - 1.$$

Observation 2.7. If $\vec{C_n}$ is an oriented cycle on *n* vertices then $D_{\vec{C_n}}$ is CC(1) and rank $D_{\vec{C_n}} = n - 1$.

Theorem 2.8. Let G be any graph which contains a Hamiltonian cycle. Then G can be oriented in such a way that $D_{\vec{G}}$ is CC(2) and therefore PR.

Theorem 2.9. If $\vec{D_G}$ and $\vec{D_G}$ are two distinct orientated vertex-edge incidence matrices associated with a graph G, then there exists a signature matrix S such that $\vec{D_G} = \vec{D_G} \cdot S$.

Observation 2.10. Let $D_{\vec{G}}$ be an incidence matrix for the strongly connected oriented graph \vec{G} . If $\mathbb{I} = \{I_1, \ldots, I_k\}$ is a partition of the the columns of $D_{\vec{G}}$ which satisfies the columns condition, then I_1 is an edge-disjoint union of cycles.

Theorem 2.11. Let $D_{\vec{G}}$ be an incidence matrix for the strongly connected oriented graph \vec{G} . Any set $\{I_1, \ldots, I_t\}$ such that $I_i \in E_{\vec{G}}$, $I_j \cap I_l = \emptyset$ if $j \neq l$, and for all $1 \leq j \leq t, \sum_{i \in I_j} a_i \in \langle a_i : i \in \bigcup_{l=1}^t I_l \rangle$, can be extended to a partition of $E_{\vec{G}}$ that satisfies the columns condition.

Corollary 2.12. Let $D_{\vec{G}}$ be an incidence matrix for the strongly connected oriented graph \vec{G} . The greedy algorithm produces a partition of the columns of $D_{\vec{G}}$ which satisfies the columns condition.

3 Sign Patterns

A sign pattern matrix (or sign pattern for short) is a (rectangular) matrix having entries in $\{+, -, 0\}$. For a real matrix A, $\operatorname{sgn}(A)$ is the sign pattern having entries that are the signs of the corresponding entries in A. If \mathbb{Y} is an $n \times n$ sign pattern, the sign pattern class (or qualitative class) of \mathbb{Y} , denoted $\mathcal{Q}(\mathbb{Y})$, is the set of all $A \in \mathbb{R}^{n \times n}$ such that $\operatorname{sgn}(A) = \mathbb{Y}$. It is traditional in the study of sign patterns to say that a sign pattern \mathbb{Y} requires property P if every matrix in $\mathcal{Q}(\mathbb{Y})$ has property P and to say that \mathbb{Y} allows property P if there exists a matrix in $\mathcal{Q}(\mathbb{Y})$ that has property P. Patterns that require partition regularity are too trivial to be of interest:

Theorem 3.1. The only sign patterns that requires partition regularity are the all zero sign patterns.

Proof. Assume $\mathbb{Y} = [\psi_{ij}]$ has a nonzero entry. Construct a matrix $A = [a_{ij}]$ as follows:

- For all i, j such that $\psi_{ij} = 0, a_{ij} = 0$.
- For all i, j such that $\psi_{ij} = +, a_{ij} = 1$.
- For all i, j such that $\psi_{ij} = -, a_{ij} = -\frac{1}{n}$.

There is no subset of columns that sum to zero, so A does not have the columns condition and so is not partition regular.

Since a partition regular matrix must satisfy the columns condition, it is clear that in order for a sign pattern to allow partition regularity, any nonzero row must have both at least one + entry and at least one - entry. This is also sufficient for a sign pattern to allow partition regularity:

Theorem 3.2. Let \mathbb{Y} be an $m \times n$ sign pattern. The following are equivalent:

- 1. Each row of \mathbb{Y} has at least one + entry and at least one entry or every entry is 0.
- 2. \mathbb{Y} allows CC(1).
- 3. Y allows partition regularity.

Proof. It is clear that $(2) \implies (3) \implies (1)$. Assume each row of $\mathbb{Y} = [\psi_{ij}]$ has at least one + entry and at least one - entry or every entry is 0. If row *i* is non entirely 0, let m(i) denote the column number of the first - entry in row *i*; otherwise, m(i) = 0. Construct a matrix $A = [a_{ij}]$ as follows:

- For all i, j such that $\psi_{ij} = 0, a_{ij} = 0$.
- For all *i* such that m(i) > 0:
 - If $\psi_{ij} = +, a_{ij} = 1$.
 - For j > m(i), if $\psi_{ij} = -$ then $a_{ij} = -\frac{1}{n}$.
 - $\circ a_{i,m(i)} = -\sum_{j \neq m(i)} a_{ij}.$

Clearly $A \in \mathcal{Q}(\mathbb{Y})$ and A1 = 0, so A has CC(1).

The minimum rank of an $m \times n$ sign pattern \mathbb{Y} is

$$mr(\mathbb{Y}) = \min\{rank(A) : A \in \mathcal{Q}(\mathbb{Y})\},\$$

and the maximum nullity of \mathcal{Y} is

$$M(\mathbb{Y}) = \max\{ \operatorname{null}(A) : A \in \mathcal{Q}(\mathbb{Y}) \}.$$

Clearly $mr(\mathcal{Y}) + M(\mathcal{Y}) = n$.

It is not always the case that the nullity of a partition regulaar matrix can be realized by the number of cells in a columns condition partition. For example, for $A = \begin{bmatrix} 3 & -1 & -1 & -1 \end{bmatrix}$, null(A) = 3 but A is CC(m) only for m = 1. But the following question remains open:

Question 3.3. If \mathbb{Y} allows partition regularity, must there exist a matrix $A \in \mathcal{Q}(\mathbb{Y})$ such that A is $CC(M(\mathbb{Y}))$?

Theorem 3.4. Let G be a connected graph, let \vec{G} be an orientation of G, and let $\mathbb{Y} = \operatorname{sgn}(D_{\vec{G}})$. Then the following are equivalent:

- 1. \mathbb{Y} allows PR
- 2. $D_{\vec{G}}$ is PR
- 3. \vec{G} is strongly connected.

Proof. [will write this later]