Rank and nullity of Partition Regular Matrices

Leslie Hogben* Jillian McLeod ${ }^{\dagger}$

September 6, 2009

1 Introduction

Terminology:

- Let $A \in \mathbb{Q}^{u \times v}$. We refer to A as being $\mathrm{CC}(m)$ if A satisfies the columns condition with a partition consistent of m classes.
- By Rado's theorem we have that A is $\mathrm{CC}(m)$ for some $m \in \mathbb{N}$ if and only if A is partition regular. We will use the abbreviation $P R$ for partition regular and use it interchangeably with the statement " A is $\mathrm{CC}(m)$ for some $m \in \mathbb{N}$."
- Let $A \in \mathbb{Q}^{u \times v}$. An index k is a null index if for every vector $\mathbf{x}=\left[x_{i}\right] \in \operatorname{ker} A, x_{k}=0$.

Observation 1.1.

1. $A \in \mathrm{CC}(1)$ if and only if $A \mathbb{1}=\mathbf{0}$, where $\mathbb{1}=[1, \ldots, 1]^{T}$.
2. If A is $\mathrm{CC}(m)$, then $\operatorname{rank}(A) \leq v-m$, since in this case A has at least m dependent columns.
3. If $\vec{x} \in \operatorname{ker}(A)$ such that no coordinate of \vec{x} is allowed to be 0 , and $D=\operatorname{diag}\left(x_{1}, \ldots, x_{v}\right)$, then the matrices $D^{-1} A D$ and $A D$ are $C C(1)$ and therefore $P R$.

Theorem 1.2. If A is a $u \times v$ matrix such that A has a null index, then A is not $P R$.

[^0]
2 Incidence matrices of oriented graphs

Adjacency matrices are not PR since they are nonnegative and nonzero matrices. Oriented vertex-edge incidence matrices can be PR and we look here at questions that arise naturally in this context.

Notation:

Let $\vec{G}=(V, E)$ be an oriented graph. Then $D_{\vec{G}}$ denotes its vertex-edge incidence matrix.
Observation 2.1. While an arbitrary matrix A is $C C(1)$ if and only if $\overrightarrow{1} \in \operatorname{ker}(A)$, for any oriented graph \vec{G}, the vector $\mathbb{1}=[1, \ldots, 1]^{T}$ is in the left null space of $D_{\vec{G}}$.

Observation 2.2. Let \vec{G} be an oriented graph and \vec{D}_{G} its vertex-edge incidence matrix. If \vec{G} has either a source or a sink then \vec{D}_{G} is not $P R$.

Observation 2.3. For any \vec{G}, the matrix $D_{\vec{G}}$ has net column weight of 0 . Note that the row weight is variable.

Theorem 2.4. Let G be a connected graph. The following are equivalent:

1. $K_{e}(G) \geq 2$, i.e., G has no bridge,
2. G is the union of its cycles,
3. G can be oriented so that the corresponding vertex-edge incidence matrix is $P R$.

Proof. The following recursive algorithm produces the desired partition: Pick an unoriented cycle and orient it cyclically. Let the corresponding columns of the vertex-edge incidence matrix be the first cell of our partition I_{1}. Repeat this process until all edges are in some class I_{k}.

Theorem 2.5. For an oriented graph \vec{G}, the matrix \vec{D}_{G} is $P R$ if and only if \vec{G} is strongly connected.
Corollary 2.6. For any $D_{\vec{G}}$, where \vec{G} is strongly connected,

$$
\operatorname{rank} D_{\vec{G}} \leq|G|-1
$$

Observation 2.7. If $\overrightarrow{C_{n}}$ is an oriented cycle on n vertices then $D_{\overrightarrow{C_{n}}}$ is $C C(1)$ and rank $D_{\overrightarrow{C_{n}}}=n-1$.
Theorem 2.8. Let G be any graph which contains a Hamiltonian cycle. Then G can be oriented in such a way that $D_{\vec{G}}$ is $C C(2)$ and therefore $P R$.

Theorem 2.9. If $\overrightarrow{D^{1}}{ }_{G}$ and $\overrightarrow{D^{2}}{ }_{G}$ are two distinct orientated vertex-edge incidence matrices associated with a graph G, then there exists a signature matrix S such that $\overrightarrow{D^{1}}{ }_{G}=\overrightarrow{D^{2}}{ }_{G} \cdot S$.

Observation 2.10. Let $D_{\vec{G}}$ be an incidence matrix for the strongly connected oriented graph \vec{G}. If $\mathbb{I}=\left\{I_{1}, \ldots, I_{k}\right\}$ is a partition of the the columns of $D_{\vec{G}}$ which satisfies the columns condition, then I_{1} is an edge-disjoint union of cycles.

Theorem 2.11. Let $D_{\vec{G}}$ be an incidence matrix for the strongly connected oriented graph \vec{G}. Any set $\left\{I_{1}, \ldots, I_{t}\right\}$ such that $I_{i} \in E_{\vec{G}}, I_{j} \cap I_{l}=\emptyset$ if $j \neq l$, and for all $1 \leq j \leq t, \sum_{i \in I_{j}} a_{i} \in\left\langle a_{i}: i \in \cup_{l=1}^{t} I_{l}\right\rangle$, can be extended to a partition of $E_{\vec{G}}$ that satisfies the columns condition.

Corollary 2.12. Let $D_{\vec{G}}$ be an incidence matrix for the strongly connected oriented graph \vec{G}. The greedy algorithm produces a partition of the columns of $D_{\vec{G}}$ which satisfies the columns condition.

3 Sign Patterns

A sign pattern matrix (or sign pattern for short) is a (rectangular) matrix having entries in $\{+,-, 0\}$. For a real matrix $A, \operatorname{sgn}(A)$ is the sign pattern having entries that are the signs of the corresponding entries in A. If \mathbb{Y} is an $n \times n$ sign pattern, the sign pattern class (or qualitative class) of \mathbb{Y}, denoted $\mathcal{Q}(\mathbb{Y})$, is the set of all $A \in \mathbb{R}^{n \times n}$ such that $\operatorname{sgn}(A)=\mathbb{Y}$. It is traditional in the study of sign patterns to say that a sign pattern \mathbb{Y} requires property P if every matrix in $\mathcal{Q}(\mathbb{Y})$ has property P and to say that \mathbb{Y} allows property P if there exists a matrix in $\mathcal{Q}(\mathbb{Y})$ that has property P. Patterns that require partition regularity are too trivial to be of interest:
Theorem 3.1. The only sign patterns that requires partition regularity are the all zero sign patterns.
Proof. Assume $\mathbb{Y}=\left[\psi_{i j}\right]$ has a nonzero entry. Construct a matrix $A=\left[a_{i j}\right]$ as follows:

- For all i, j such that $\psi_{i j}=0, a_{i j}=0$.
- For all i, j such that $\psi_{i j}=+, a_{i j}=1$.
- For all i, j such that $\psi_{i j}=-, a_{i j}=-\frac{1}{n}$.

There is no subset of columns that sum to zero, so A does not have the columns condition and so is not partition regular.

Since a partition regular matrix must satisfy the columns condition, it is clear that in order for a sign pattern to allow partition regularity, any nonzero row must have both at least one + entry and at least one - entry. This is also sufficient for a sign pattern to allow partition regularity:

Theorem 3.2. Let \mathbb{Y} be an $m \times n$ sign pattern. The following are equivalent:

1. Each row of \mathbb{Y} has at least one + entry and at least one - entry or every entry is 0 .
2. \mathbb{Y} allows $\mathrm{CC}(1)$.
3. \mathbb{Y} allows partition regularity.

Proof. It is clear that $(2) \Longrightarrow(3) \Longrightarrow(1)$. Assume each row of $\mathbb{Y}=\left[\psi_{i j}\right]$ has at least one + entry and at least one - entry or every entry is 0 . If row i is non entirely 0 , let $m(i)$ denote the column number of the first - entry in row i; otherwise, $m(i)=0$. Construct a matrix $A=\left[a_{i j}\right]$ as follows:

- For all i, j such that $\psi_{i j}=0, a_{i j}=0$.
- For all i such that $m(i)>0$:

$$
\begin{aligned}
& \text { - If } \psi_{i j}=+, a_{i j}=1 \text {. } \\
& \text { - For } j>m(i) \text {, if } \psi_{i j}=- \text { then } a_{i j}=-\frac{1}{n} \text {. } \\
& \text { - } a_{i, m(i)}=-\sum_{j \neq m(i)} a_{i j} .
\end{aligned}
$$

Clearly $A \in \mathcal{Q}(\mathbb{Y})$ and $A \mathbb{1}=\mathbf{0}$, so A has $\operatorname{CC}(1)$.
The minimum rank of an $m \times n$ sign pattern \mathbb{Y} is

$$
\operatorname{mr}(\mathbb{Y})=\min \{\operatorname{rank}(A): A \in \mathcal{Q}(\mathbb{Y})\},
$$

and the maximum nullity of \mathcal{Y} is

$$
\mathrm{M}(\mathbb{Y})=\max \{\operatorname{null}(A): A \in \mathcal{Q}(\mathbb{Y})\} .
$$

Clearly $\operatorname{mr}(\mathcal{Y})+\mathrm{M}(\mathcal{Y})=n$.
It is not always the case that the nullity of a partition regulaar matrix can be realized by the number of cells in a columns condition partition. For example, for $A=\left[\begin{array}{llll}3 & -1 & -1 & -1\end{array}\right], \operatorname{null}(A)=3$ but A is $\mathrm{CC}(m)$ only for $m=1$. But the following question remains open:

Question 3.3. If \mathbb{Y} allows partition regularity, must there exist a matrix $A \in \mathcal{Q}(\mathbb{Y})$ such that A is $\mathrm{CC}(\mathrm{M}(\mathbb{Y}))$?

Theorem 3.4. Let G be a connected graph, let \vec{G} be an orientation of G, and let $\mathbb{Y}=\operatorname{sgn}\left(D_{\vec{G}}\right)$. Then the following are equivalent:

1. \mathbb{Y} allows $P R$
2. $D_{\vec{G}}$ is $P R$
3. \vec{G} is strongly connected.

Proof. [will write this later]

[^0]: *Department of Mathematics, Iowa State University, Ames, IA 50011, USA (lhogben@iastate.edu) and American Institute of Mathematics, 360 Portage Ave, Palo Alto, CA 94306 (hogben@aimath.org).
 ${ }^{\dagger}$ Department of Mathematics, Mt. Holyoke College

