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1 Introduction

Terminology:

• Let A ∈ Qu×v. We refer to A as being CC(m) if A satisfies the columns condition with a partition
consistent of m classes.

• By Rado’s theorem we have that A is CC(m) for some m ∈ N if and only if A is partition regular.
We will use the abbreviation PR for partition regular and use it interchangeably with the statement
“A is CC(m) for some m ∈ N.”

• Let A ∈ Qu×v. An index k is a null index if for every vector x = [xi] ∈ ker A, xk = 0.

Observation 1.1.

1. A ∈ CC(1) if and only if A1 = 0, where 1 = [1, . . . , 1]T .

2. If A is CC(m), then rank(A) ≤ v −m, since in this case A has at least m dependent columns.

3. If !x ∈ ker(A) such that no coordinate of !x is allowed to be 0, and D = diag(x1, . . . , xv), then the
matrices D−1AD and AD are CC(1) and therefore PR.

Theorem 1.2. If A is a u× v matrix such that A has a null index, then A is not PR.
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2 Incidence matrices of oriented graphs

Adjacency matrices are not PR since they are nonnegative and nonzero matrices. Oriented vertex-edge
incidence matrices can be PR and we look here at questions that arise naturally in this context.
Notation:
Let !G = (V,E) be an oriented graph. Then D!G denotes its vertex-edge incidence matrix.

Observation 2.1. While an arbitrary matrix A is CC(1) if and only if !1 ∈ ker(A), for any oriented
graph !G, the vector 1 = [1, . . . , 1]T is in the left null space of D!G.

Observation 2.2. Let !G be an oriented graph and !DG its vertex-edge incidence matrix. If !G has either
a source or a sink then !DG is not PR.

Observation 2.3. For any !G, the matrix D!G has net column weight of 0. Note that the row weight is
variable.

Theorem 2.4. Let G be a connected graph. The following are equivalent:

1. Ke(G) ≥ 2, i.e., G has no bridge,

2. G is the union of its cycles,

3. G can be oriented so that the corresponding vertex-edge incidence matrix is PR.

Proof. The following recursive algorithm produces the desired partition: Pick an unoriented cycle and
orient it cyclically. Let the corresponding columns of the vertex-edge incidence matrix be the first cell of
our partition I1. Repeat this process until all edges are in some class Ik.

Theorem 2.5. For an oriented graph !G, the matrix !DG is PR if and only if !G is strongly connected.

Corollary 2.6. For any D!G, where !G is strongly connected,

rankD!G ≤ |G|− 1.

Observation 2.7. If !Cn is an oriented cycle on n vertices then D !Cn
is CC(1) and rankD !Cn

= n− 1.

Theorem 2.8. Let G be any graph which contains a Hamiltonian cycle. Then G can be oriented in such
a way that D!G is CC(2) and therefore PR.

Theorem 2.9. If !D1
G and !D2

G are two distinct orientated vertex-edge incidence matrices associated
with a graph G, then there exists a signature matrix S such that !D1

G = !D2
G · S.

Observation 2.10. Let D!G be an incidence matrix for the strongly connected oriented graph !G. If
I = {I1, . . . , Ik} is a partition of the the columns of D!G which satisfies the columns condition, then I1

is an edge-disjoint union of cycles.

Theorem 2.11. Let D!G be an incidence matrix for the strongly connected oriented graph !G. Any set
{I1, . . . , It} such that Ii ∈ E!G, Ij ∩ Il = ∅ if j (= l, and for all 1 ≤ j ≤ t,

∑
i∈Ij

ai ∈ 〈ai : i ∈ ∪t
l=1Il〉,

can be extended to a partition of E!G that satisfies the columns condition.

Corollary 2.12. Let D!G be an incidence matrix for the strongly connected oriented graph !G. The greedy
algorithm produces a partition of the columns of D!G which satisfies the columns condition.
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3 Sign Patterns

A sign pattern matrix (or sign pattern for short) is a (rectangular) matrix having entries in {+,−, 0}. For
a real matrix A, sgn(A) is the sign pattern having entries that are the signs of the corresponding entries
in A. If Y is an n×n sign pattern, the sign pattern class (or qualitative class) of Y, denoted Q(Y), is the
set of all A ∈ Rn×n such that sgn(A) = Y. It is traditional in the study of sign patterns to say that a sign
pattern Y requires property P if every matrix in Q(Y) has property P and to say that Y allows property
P if there exists a matrix in Q(Y) that has property P . Patterns that require partition regularity are too
trivial to be of interest:

Theorem 3.1. The only sign patterns that requires partition regularity are the all zero sign patterns.

Proof. Assume Y = [ψij ] has a nonzero entry. Construct a matrix A = [aij ] as follows:

• For all i, j such that ψij = 0, aij = 0.

• For all i, j such that ψij = +, aij = 1.

• For all i, j such that ψij = −, aij = − 1
n .

There is no subset of columns that sum to zero, so A does not have the columns condition and so is not
partition regular.

Since a partition regular matrix must satisfy the columns condition, it is clear that in order for a sign
pattern to allow partition regularity, any nonzero row must have both at least one + entry and at least
one − entry. This is also sufficient for a sign pattern to allow partition regularity:

Theorem 3.2. Let Y be an m× n sign pattern. The following are equivalent:

1. Each row of Y has at least one + entry and at least one − entry or every entry is 0.

2. Y allows CC(1).

3. Y allows partition regularity.

Proof. It is clear that (2) =⇒ (3) =⇒ (1). Assume each row of Y = [ψij ] has at least one + entry and
at least one − entry or every entry is 0. If row i is non entirely 0, let m(i) denote the column number of
the first − entry in row i; otherwise, m(i) = 0. Construct a matrix A = [aij ] as follows:

• For all i, j such that ψij = 0, aij = 0.

• For all i such that m(i) > 0:

◦ If ψij = +, aij = 1.
◦ For j > m(i), if ψij = − then aij = − 1

n .
◦ ai,m(i) = −

∑
j $=m(i) aij .

Clearly A ∈ Q(Y) and A1 = 0, so A has CC(1).

The minimum rank of an m× n sign pattern Y is

mr(Y) = min{rank(A) : A ∈ Q(Y)},

and the maximum nullity of Y is

M(Y) = max{null(A) : A ∈ Q(Y)}.
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Clearly mr(Y) + M(Y) = n.
It is not always the case that the nullity of a partition regulaar matrix can be realized by the number

of cells in a columns condition partition. For example, for A =
[
3 −1 −1 −1

]
, null(A) = 3 but A is

CC(m) only for m = 1. But the following question remains open:

Question 3.3. If Y allows partition regularity, must there exist a matrix A ∈ Q(Y) such that A is
CC(M(Y))?

Theorem 3.4. Let G be a connected graph, let !G be an orientation of G, and let Y = sgn(D!G). Then
the following are equivalent:

1. Y allows PR

2. D!G is PR

3. !G is strongly connected.

Proof. [will write this later]
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