ALGEBRAIC K-THEORY AND QUADRATIC RECIPROCITY

Much of this comes right out of Milnor’s delightful “Introduction to Algebraic K-Theory”

1. STEP O

1.1. What is K;?

e What are projective modules?
— P is projective if there exists ) so that P ® Q ~ A"
— we get the following diagram: N
.7 i
Ve
/
P—M
e K as classes of projective modules where [P] 4 [Q] = [P & Q)]
— Ko(F)~Z
— Ko(Z) ~ Z (true for all PIDs, local rings)
e Ring structure through tensor product: [P ® Q] = [P] - [Q]

Functoriality
—i:7Z — A gives iy : Ko(Z) — Ko(A)
—ifj: A — F, then j, : Ko(A) = Ko(F)
~ Ko(A) ~ 2 Ro(A)
— Ko(A) ~Z @ C(A) when A is a Dedikind domain

2. STEP 1

2.1. What is K;?

Constructing GL(A) as limit of GL,(A)
Elementary matrices as group (multiplicatively) generated by "kR; + R;” row operations
Ki(A) ~GL(A)/E(A)
E(A) = [GL(A),GL(N)]
K1 (A) as abelianization of GL(A)

There is natural map Ko(A) ® Ki(A) — K1(A) when A is commutative
Congruence subgroup problem for O a ring of algebraic integers of number field

— Let T'g = ker(SL,(O) = SL,(O/q))

— If I'y is in some subgroup of SL,(O), then that subgroup is finite index

— Are there finite subgroups of SL,(O) which don’t contain some I'q?
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3. STEP 2

3.1. What is K57

e Let e’\ be the matrix with A in the ¢, j-position, and 1’s along the diagonal
° Elementary matrices e . and ekl satisfy the following relation:

1, ifj#ki#I
e, el = ey, ifj=ki#l
e fh, i j A k=1

e K5(A) is all relations amongst elementary matrices modulo these “obvious” ones
11 1 0 11 0 1
¢ Example: ( 0 1 ) ( 11 ) < 0 1 ) = < 10 >7 S0 (6%29211612) =1

3.2. A simpler description for fields.

Ky(F) = F* ® F* modulo the ideal generated by {f ® (1 — f): f € F*\ {1}}.
Steinberg symbols are bimultiplicative ¢ : F* x F* — A so that ¢(x,1 —x) =0
K5(F) is the “universal Steinberg symbol”

{x,—x} =1 and also {z,y} = {y !, 2}

—{z,—x} = {x,l —I
— {z,y} = {z,yHe, —aHay, —oy} Hy ™' —y 1}
e if v is a discrete valuation on F', A the valuation ring and P8 the maximal ideal, then

20W)
du(a,y) = (~1)""

yv(x)

mod P

is a Steinberg symbol with values in F* = (A/9B)*

3.3. Why do number theorists care? (Part I).

e For p an odd prime, let (z,y), € IF; be the Steinberg symbol from p-adic valuation
— note: if (p,z) =1, then (z,p), =2 mod p.

e For p = 2, we need a new symbol definition since F3 is stupid
— write z = 27®)z/ € Q, and then

[0,0], ifa’=1 mod8
' ) [1,1], if2’=3 mod8
[i(z), k(x)] = [0,1], if2’=5 mod 8
[1,0], if2’=7 mod 8

— define ( = (—1) @i+ (@)k(y)+k()j ()

if either p=1 mod 4 or g =1 mod 4
~ note ( { 1, 1fp—q:3 mod 4
e It turns out that K5 (Q)

~ Fo@F5 ®FZ @- - by the map {z,y} — (z,)2®(x,y)3D (2, y)5®- - -
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Proof. Let Ly, be the subgroup of K2(Q) generated by symbols {z,y} where |z|, |y| < m. Note
L,,—1 = L, unless m is prime.

We'll show that L, = Fo @ F5 & --- @ F by showing that L,/L, 1 ~ F) (and using
induction). Notice that

Lo ={{-1,1},{1,1}, {1, -1}, {-1,-1}} = {id, {—1,—1}} ~ Fa.

(This is our base case.)

We define the map @ : F — L,/L,-1 by ®(x) = {z,p}.
— well-defined?
— surjective? L, is generated by L,_1,{p,z}, {z,p}, {p,p}. Note

id = {-p,p} ={-1.pH{p, p}
O

e Universality says that for any ¢ : Q* x Q* — A there exist ¢, : Fy — A (and ¢g : Fo — A) so

that c(z,y) = [, op((z,y)p)

1, ifz>00ry>0

e When (z,y)s = { 1 ifzy<0 }, it turns out that we get

p—1
2

(.Z, y)oo = (CL’, y)2 H(ZL’, y)P

p

p—1

Proof. Certainly ¢,((x,y)p) = ((:zt,y)p2 >€p where €, is 0 or 1.
— Take x =y = —1. Then
—1=(-1,1)00 = (—1,-1)%
—Ifp=8k+3thenusex =2, y=p:

1= @ = 2 (2" )

—Ifp=8k+T7thenusez=—-1,y=p
— If p = 8k + 1, then there exists a prime ¢ < p so that p isn’t a residue mod ¢q. Now plug
inz=gqy=p:

1=@ﬂ%ﬁ4n®20n®§j%<@”£?>%:_<@ﬂg;)%

e Plug in p,q and you get quadratic reciprocity
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