ALGEBRAIC K-THEORY AND QUADRATIC RECIPROCITY

Much of this comes right out of Milnor's delightful "Introduction to Algebraic K-Theory"

1. Step 0

1.1. What is K_{0} ?

- What are projective modules?
- P is projective if there exists Q so that $P \oplus Q \simeq \Lambda^{n}$
- we get the following diagram:

- K_{0} as classes of projective modules where $[P]+[Q]=[P \oplus Q]$
$-K_{0}(F) \simeq \mathbb{Z}$
- $K_{0}(\mathbb{Z}) \simeq \mathbb{Z}$ (true for all PIDs, local rings)
- Ring structure through tensor product: $[P \otimes Q]=[P] \cdot[Q]$
- Functoriality
$-i: \mathbb{Z} \rightarrow \Lambda$ gives $i_{*}: K_{0}(\mathbb{Z}) \rightarrow K_{0}(\Lambda)$
- if $j: \Lambda \rightarrow F$, then $j_{*}: K_{0}(\Lambda) \rightarrow K_{0}(F)$
$-K_{0}(\Lambda) \simeq \mathbb{Z} \oplus \tilde{K}_{0}(\Lambda)$
- $K_{0}(\Lambda) \simeq \mathbb{Z} \oplus C(\Lambda)$ when Λ is a Dedikind domain

2. Step 1

2.1. What is K_{1} ?

- Constructing $G L(\Lambda)$ as limit of $G L_{n}(\Lambda)$
- Elementary matrices as group (multiplicatively) generated by " $k R_{i}+R_{j}$ " row operations
- $K_{1}(\Lambda) \simeq G L(\Lambda) / E(\Lambda)$
- $E(\Lambda)=[G L(\Lambda), G L(\Lambda)]$
$K_{1}(\Lambda)$ as abelianization of $G L(\Lambda)$
- There is natural map $K_{0}(\Lambda) \otimes K_{1}(\Lambda) \rightarrow K_{1}(\Lambda)$ when Λ is commutative
- Congruence subgroup problem for \mathcal{O} a ring of algebraic integers of number field
- Let $\Gamma_{\mathfrak{q}}=\operatorname{ker}\left(S L_{n}(\mathcal{O}) \rightarrow S L_{n}(\mathcal{O} / \mathfrak{q})\right)$
- If $\Gamma_{\mathfrak{q}}$ is in some subgroup of $S L_{n}(\mathcal{O})$, then that subgroup is finite index
- Are there finite subgroups of $S L_{n}(\mathcal{O})$ which don't contain some Γ_{q} ?

3. Step 2

3.1. What is K_{2} ?

- Let $e_{i j}^{\lambda}$ be the matrix with λ in the i, j-position, and 1's along the diagonal
- Elementary matrices $e_{i j}^{\lambda}$ and $e_{k l}^{\mu}$ satisfy the following relation:

$$
\left[e_{i j}^{\lambda}, e_{k l}^{\mu}\right]= \begin{cases}1, & \text { if } j \neq k, i \neq l \\ e_{i l}^{\lambda \mu}, & \text { if } j=k, i \neq l \\ e_{k j}^{-\mu \lambda}, & \text { if } j \neq k, i=l\end{cases}
$$

- $K_{2}(\Lambda)$ is all relations amongst elementary matrices modulo these "obvious" ones
- Example: $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, so $\left(e_{12}^{1} e_{21}^{-1} e_{12}^{1}\right)^{4}=I$

3.2. A simpler description for fields.

- $K_{2}(F)=F^{\times} \otimes F^{\times}$modulo the ideal generated by $\left\{f \otimes(1-f): f \in F^{\times} \backslash\{1\}\right\}$.
- Steinberg symbols are bimultiplicative $c: F^{\times} \times F^{\times} \rightarrow A$ so that $c(x, 1-x)=0$
- $K_{2}(F)$ is the "universal Steinberg symbol"
- $\{x,-x\}=1$ and also $\{x, y\}=\left\{y^{-1}, x\right\}$

$$
\begin{aligned}
& -\{x,-x\}=\left\{x, \frac{1-x}{1-x^{-1}}\right\} \\
& -\{x, y\}=\{x, y\}\{x,-x\}\{x y,-x y\}^{-1}\left\{y^{-1},-y^{-1}\right\}
\end{aligned}
$$

- if v is a discrete valuation on F, Λ the valuation ring and \mathfrak{P} the maximal ideal, then

$$
d_{v}(x, y)=(-1)^{v(x) v(y)} \frac{x^{v(y)}}{y^{v(x)}} \quad \bmod \mathfrak{P}
$$

is a Steinberg symbol with values in $\bar{F}^{\times}=(\Lambda / \mathfrak{P})^{\times}$

3.3. Why do number theorists care? (Part I).

- For p an odd prime, let $(x, y)_{p} \in \mathbb{F}_{p}^{\times}$be the Steinberg symbol from p-adic valuation
- note: if $(p, x)=1$, then $(x, p)_{p}=x \bmod p$.
- For $p=2$, we need a new symbol definition since \mathbb{F}_{2}^{\times}is stupid
- write $x=2^{j(x)} x^{\prime} \in \mathbb{Q}$, and then

$$
[i(x), k(x)]=\left\{\begin{array}{lll}
{[0,0],} & \text { if } x^{\prime} \equiv 1 \bmod 8 \\
{[1,1],} & \text { if } x^{\prime} \equiv 3 \bmod 8 \\
{[0,1],} & \text { if } x^{\prime} \equiv 5 \bmod 8 \\
{[1,0],} & \text { if } x^{\prime} \equiv 7 \bmod 8
\end{array}\right.
$$

- define $(x, y)_{2}=(-1)^{i(x) i(y)+j(x) k(y)+k(x) j(y)}$
- note $(p, q)_{2}= \begin{cases}1, & \text { if either } p \equiv 1 \bmod 4 \text { or } q \equiv 1 \bmod 4 \\ -1, & \text { if } p \equiv q \equiv 3 \bmod 4\end{cases}$
- It turns out that $K_{2}(\mathbb{Q}) \simeq \mathbb{F}_{2} \oplus \mathbb{F}_{3}^{\times} \oplus \mathbb{F}_{5}^{\times} \oplus \cdots$ by the map $\{x, y\} \mapsto(x, y)_{2} \oplus(x, y)_{3} \oplus(x, y)_{5} \oplus \cdots$

Proof. Let L_{m} be the subgroup of $K_{2}(\mathbb{Q})$ generated by symbols $\{x, y\}$ where $|x|,|y| \leq m$. Note $L_{m-1}=L_{m}$ unless m is prime.

We'll show that $L_{p}=\mathbb{F}_{2} \oplus \mathbb{F}_{3}^{\times} \oplus \cdots \oplus \mathbb{F}_{p}^{\times}$by showing that $L_{p} / L_{p-1} \simeq \mathbb{F}_{p}^{\times}$(and using induction). Notice that

$$
L_{2}=\{\{-1,1\},\{1,1\},\{1,-1\},\{-1,-1\}\}=\{\text { id, }\{-1,-1\}\} \simeq \mathbb{F}_{2}
$$

(This is our base case.)
We define the map $\Phi: \mathbb{F}_{p}^{\times} \rightarrow L_{p} / L_{p-1}$ by $\Phi(x)=\{x, p\}$.

- well-defined?
- surjective? L_{p} is generated by $L_{p-1},\{p, x\},\{x, p\},\{p, p\}$. Note

$$
\mathrm{id}=\{-p, p\}=\{-1, p\}\{p, p\}
$$

- Universality says that for any $c: \mathbb{Q}^{\times} \times \mathbb{Q}^{\times} \rightarrow A$ there exist $\phi_{p}: \mathbb{F}_{p}^{\times} \rightarrow A\left(\right.$ and $\phi_{2}: \mathbb{F}_{2} \rightarrow A$) so that $c(x, y)=\prod_{p} \phi_{p}\left((x, y)_{p}\right)$
- When $(x, y)_{\infty}=\left\{\begin{array}{ll}1, & \text { if } x>0 \text { or } y>0 \\ -1, & \text { if } x, y<0\end{array}\right\}$, it turns out that we get

$$
(x, y)_{\infty}=(x, y)_{2} \prod_{p}(x, y)_{p}^{\frac{p-1}{2}}
$$

Proof. Certainly $\phi_{p}\left((x, y)_{p}\right)=\left((x, y)_{p}^{\frac{p-1}{2}}\right)^{\epsilon_{p}}$ where ϵ_{p} is 0 or 1 .

- Take $x=y=-1$. Then

$$
-1=(-1,1)_{\infty}=(-1,-1)_{2}^{\epsilon_{2}} .
$$

- If $p=8 k \pm 3$ then use $x=2, y=p$:

$$
1=(2, p)_{\infty}=(2, p)_{2}\left((2, p)_{p}^{\frac{p-1}{2}}\right)^{\epsilon_{p}}
$$

- If $p=8 k+7$ then use $x=-1, y=p$
- If $p=8 k+1$, then there exists a prime $q<p$ so that p isn't a residue $\bmod q$. Now plug in $x=q, y=p$:

$$
1=(p, q)_{\infty}=(p, q)_{2}\left((p, q)_{q^{\frac{q-1}{2}}}\right)^{\epsilon_{q}}\left((p, q)^{\frac{p-1}{2}}\right)^{\epsilon_{p}}=-\left((p, q)^{\frac{p-1}{2}}\right)^{\epsilon_{p}}
$$

- Plug in p, q and you get quadratic reciprocity

